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Setting the scene: Hamiltonians
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Errors

We don’t know . exactly
We can’t control FH_ exactly

So total evolution U will be wrong

Is there some way of making U robust to small

errors in HH. and JH_?



Systematic Errors

Random errors are completely unknown
— Have to use error correction or DFS approaches

Systematic errors are unknown but constant
We can use reproducibility to reduce errors!

In chaotic systems small errors build up
catastrophically; we need anti-chaos where
errors systematically cancel each other out!



Calibration

* |f errors are constant why not just characterise
them and calibrate them out?

 Works well for some errors, but consider
— Multiple qubits interacting with same fields

— Macroscopic ensembles in NMR systems
— Temporal ensembles and slowly varying fields

 RF amplifier power often oscillates with a
period of about 20 minutes (temperature)



Systematic Errors

* Almost any QIP system with control fields will
suffer from time variations in these fields

 Many systems will also have some sort of
spatial ensemble

 Our aim is to produce logic gates which are
robust to a distribution of control fields



NMR

* The methods | will
describe were mostly
developed for use in
NMR and many papers
use NMR language

 Important to know the
basics! But don’t worry
too much about the
details




NMR spin Hamiltonian
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Zeeman term Spin—spin coupling

Assumes a system of two spin-1/2 nuclei in the liquid state
Hamiltonian is much more complex in the solid state
Spin-0 nuclei can obviously be ignored

High-spin nuclei can be largely ignored (complex reasons)



Weak coupling
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 Weak coupling approximation is to keep only the diagonal
terms. The coupling is truncated by the Zeeman terms
(equivalent to first order perturbation theory)

* Good approximation in most NMR QIP systems



Product Operators

H,=2zv I +27xv,S. +7mJ21S,

Traditional notation developed in NMR

Spins called / and S and spin—spin coupling called J
Factors of %: are incorporated into the spin operators
Factors of 2 get moved around in ways that look strange
unless you are used to it (and even then are a bit odd)

Fundamentally equivalent to ordinary notation
Don’t worry too much about it



Multi-spin Hamiltonian
H,=1) wol+i) w,0l0!
J J<k

 Weak coupling approximation assumed
e Some spin—spin couplings may be negligible

Remember that this Hamiltonian only applies
for spin-1/2 nuclei in the liquid state!



Energy scales

* The NMR transition frequency depends on the
gyromagnetic ratio of the nucleus and the
magnetic field strength

* Typical NMR transitions occur in the frequency
range 50MHz to 800 MHz

* Very low energy compared with kT at room
temperature!



Ensembles

* The NMR transition frequency is far too low to
detect single photons directly

* [nstead use macroscopic ensembles with
many identical copies of each qubit

e Can’t achieve spatial localisation!
e Can’t achieve projective measurements!

e Spin states are (almost) always highly mixed!



Pseudo pure states
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Can be prepared in various ways not described here

The maximally mixed state does not evolve and cannot be
detected by NMR measurements so behaviour is identical to
that of corresponding pure states

The effective purity if the state p is very low and scales
exponentially badly with n, the number of qubits, making
large scale NMR QIP impractical



Coherent control

The low transition frequency means that are
always in the coherent control regime

Spontaneous lifetimes are extremely long
Stimulated decay lifetimes are very long

Easy to make strong coherent RF sources



Pulses

A pulse is a short period of applied RF near
resonance with one or more spins

Spins near resonance are strongly affected

Best understood in the rotating frame and
making the rotating wave approximation

Spins far from resonance evolve under the
background Hamiltonian



Heteronuclear & Homonuclear

* |[n heteronuclear systems all the spins are of
different nuclear species and so have very
different Larmor frequencies

* In homonuclear systems two or more spins
are of the same nuclear species and so have
very similar Larmor frequencies, differing only
by small chemical shifts

 Heteronuclear systems are much simpler!



Heteronuclear systems ‘i

Control fields only affect one spin at a time

 Work in a multiply rotating frame to remove
all the Larmor frequencies

H=H,+> H @) H,=1> w,0/0!

IH . = %Qj(t)(a;' cos| ,(1) |+ 0/ sin| ¢, (r)])

\

Pulse amplitude Pulse phase



Pulses and delays

* Both conventional NMR experiments and
NMR QIP experiments are implemented by
alternating short pulses and long delays

* As long as pulses are short enough can neglect
evolution under HH,

* Delays are used to implement two-qubit gates
through spin—spin couplings



Single qubit gates

On resonance pulses implement rotations

Write as s where 6=(27is the angle of
rotation and ¢@is the azimuth (phase) angle of
the rotation in the xy-plane

Can describe angles in radians or degrees or
(for phase angles) using axis letter codes

Other gates can be implemented as networks
of pulses



NOT gate

The NOT gate is a 180° rotation around x

NOT =180 =7x_=180, =7,

Only right up to (irrelevant) global phase

Note that we consider this as a 180° evolution
under 6x/2 and not a 90° evolution under o«

Other conventions are used leading to
enormous potential for confusion!



Hadamard gate

 The Hadamard gate is a 180° rotation around

a tilted axis and is best implemented using a
sequence of pulses

H=90,180, =180,90

* Note that pulses are applied from left to right,
the opposite way from propagators!



Phase gates

* Phase gates are equivalent to z-rotations and
can be implemented using various sequences

6. =90,6,90_,
0. =180,180,.,,,

* First approach (composite z-rotation) more
common in conventional NMR, second
approach more common in NMR QIP



Two gqubit gates

* Delays are used to implement two-qubit gates
through spin—spin couplings

e Background Hamiltonian contains a complex
network of couplings

* Can be simplified using spin echoes to remove
unwanted couplings. See any standard text!



Homonuclear systems {

A control field can in general affect two or
more spins

Low amplitude control fields restore selection
but pulses now long compared with couplings

Gets complicated!
So ignore it for the moment...



Bloch Sphere

States of a qubit can be
described in spherical polar
coordinates and then mapped
onto points on the surface of

+» the Bloch sphere

Mixed states live inside the
sphere

) =cos(2/2)|0)+sin(/2)e"

1)



Bloch vector

* Bloch vector points from origin of the Bloch
sphere to the qubit state

e Can also derive it from density matrices
v (v :%(Jl +5.0,+5,0,+ SZUZ)
s, =sInyYcos@Y s =sinPsin@ s =cost}

* sis a unit vector for a pure state



Conventional NMR

Spin starts off in thermal state along +z axis

90° pulse rotates spin into xy-plane where it
precesses at the Larmor frequency

Observe magnetisation and Fourier transform
to get spectrum of transitions

Usually described using Bloch vectors with
some unusual signh conventions
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Pulse length errors

* Really pulse strength errors

* The RF coil produces a magnetic
field which varies over the sample

e Control fields vary by +10% over
most of sample and more at edges

e Rotation angles vary in proportion

* Coils optimised for field strength
not homogeneity




Off-resonance effects

* Occur when the control field is not
exactly on resonance with a
B q transition frequency

v ¢ Hamiltonian is the sum of the RF

B, field and an off resonance term
e Evolution occurs around tilted axis

* Important in homonuclear spin
systems



Errors

U (6,0)= exp[—i@(O'x cosp+0, sin¢)/2]
U(6,0)=cos(8/2)1—isin(6/2)0,

V(6,0)

U (6(1+¢€),0)
U(6,0)—ex18[sin(6/2)1+icos(8/2)0,]
+0(82)

Pulse length error is first order in &



F(U,V)

Fidelities

tr(UTV) Hilbert—Schmidt inner
i product of propagators

cos (&6 / 2)‘

1—£°6° /8+0(84)

Sometimes defined as the square of this formula
instead; the difference is not very important but

watch out!



Infidelities
I(U,V) =1—f(U,V)
=£°0’ /8+0(84)
Simple pulses have second order infidelity in e
Note that nt" order errors give 2nt" order infidelity

Using the square of the fidelity definition just
doubles the infidelity for small errors



Point-to-point fidelity

P(U.V.y)=[(w|U'V|w)]

Sometimes use the square root of this formula

Common in conventional NMR where particular
initial states are very important

Can extend to QIP by averaging over all initial states



Composite pulses

 Widely used in conventional NMR to
tackle pulse length errors and off-
resonance effects

* Replace a single pulse by a sequence
of pulses with same overall effect but
greater tolerance of errors

Invented by Malcolm Levitt (Oxford Chemistry) during
his undergraduate project!



Composite inversion

Z\

90,180,90,

Designed for point-to-
point transfer from +z to
—z in presence of pulse
length errors.

Easily seen on Bloch
sphere: error in outer
pulses is largely
corrected by inner pulse



Composite inversion
* Point to point fidelity P =1- 4+ 0(84)
is greatly improved

P

4_4 6
iy =1 —ETT /16+0(£ )
 But overall fidelity is f=1—82ﬂ'2/4+0(84)

unchanged!

On average Levitt’s composite pulse is no better than
a simple pulse (does better for some initial states but
worse for others)



Fully compensating pulses

 For QIP we need a pulse that is error tolerant
for any initial state

* Rarely needed in conventional NMR, but a few
were designed as curiosities

 Known as fully compensating pulses, or Class
A composite pulses or general rotors



Tycko’s pulse

Tycko’s composite inversion pulse
180,,180,,,180,, will perform 180,
with compensation of pulse length
errors for any initial state

Fr =1—-€*x37" 1128+ 0( €°)

A robust noT gate!



SCROFULOUS pulses
replace 6, with 5,180, 5,

B = arcsinc( 2cos(6/ 2)j sinc(x) =sin(x)/ x
/A
B —7cos o —
= arms(zﬁsin(e/ 2)] =9 arccos(zﬁj

In the case 6=180° Tycko’s result is recovered;
otherwise have to solve numerically



SCROFULOUS pulses
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Designing composite pulses

Tycko’s used a Magnus expansion to get a
series expansion of the propagator in the error
and set the first order error term to zero

Have to also make the error free propagator
do the right thing

Finding a simultaneous solution to these two
targets is difficult in the general case

Depends on lucky initial guesses



Wimperis and error correction

 Wimperis’s key idea was to separate the two
parts of the problem by combining an error

prone main pulse with an error correcting “do-
nothing” pulse




BB1

180,180,180, 180, =[-2(¢4,~ ¢, +4,~¢,) |
choose ¢ = ¢, and @, = @,

180,360,180, =1

In the absence of errors this sequence does nothing.
What happens with pulse length errors?



BB1 with errors

W(¢1,¢2)=V(7Z',¢1)V(27Z',¢2)V(7Z',¢1)

=1-exiz(Co, +S0,)+0(€’)

C =cos(@ )+cos(2¢,—9,)
S =sin(@,)+sin (24, — 9, )

choosing @, =3¢, sets §$ =0



BB1 with errors

W (4,30 )=1-exin2cosgo, + 0(82)
~U (ex4rxcosg,0)

This sequence generates a pure error term, a
rotation around o, with an angle proportional to
the error £and depending on ¢,.



BB1 with errors

The main pulse is equal to a perfect 6, pulse
followed by a rotation by £6

V(6,0)=U (€6,0)U (6,0)
W (3,30 )=U (e4mcosg,,0)

Can make the two error terms cancel: choose

Arcosg=—6 = @ ==xarccos(—6/4r)



BB1

Wimperis placed the correction sequence before
the main pulse

V(6.0)W(4,.3¢)

but can put it after the pulse or in the middle

V(6/2,0)W(¢,3¢,)V(6/2,0)



BB1 fidelity

 Removes the 1%t order error term so expect
the infidelity to be 4% order in & but actually

Fopr =1-€°X57° 11024+ 0(€*) for 180" pulse

e Simultaneous removal of the 2" order error
term! Very nice, but no obvious explanation

* Fidelity depends on @but independent of
where the W pulses are placed



Fidelities and pulse length errors
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Fidelities of NoT gates in presence of pulse length
errors (dashed line is naive pulse)



Off-resonance effects

* Consider a control field of strength @, at an
offset 0w from resonance. What matters is
the off-resonance fraction f=o0w/ w,

e Rotation occurs around a tilted axis

Off-resonance effects on a 90°
excitation pulse for off-resonance
fractions fin therange Oto 1 in
steps of 0.1




Errors and infidelity
R(6,0)= exp[—i&’(cos @O, +singo, + fO'Z)/2]
:U(9,¢)—f><isin(9/2)0'Z
e Erroris first orderin f

tr(U'R in2(6/2)
E (2 |1 s o)

 |nfidelity is second order in f



Inverse pulses

U(6.0+7)=U(-6.9) = 8,0, =1

Easy to make pulses with negative rotation angles
V(6.9+7)=V(-6.9)

Still works with pulse length errors

R(6,0+ 1)+ R(-6,9)

Doesn’t work with off-resonance effects: can only
use physical (positive) angles



Composite inversion
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90,180,90,

Designed for point-to-
point transfer from +z to
—z in presence of off-
resonance effects.

Seen on Bloch sphere:
error in outer pulses is
largely corrected by
inner pulse



Tycko’s pulse

Tycko also discovered a composite
90° pulse 385,320_,25, which will
perform 90, with moderate
compensation of off-resonance
effects for any initial state

Discovered by a numerical search
but generalised as corpsE gates




CORPSE pulses
replace _ by a S y. witha—[+y=0
C(6,0)=R(7,0)R(a+y—06,7)R(a,0)
=U(6,0)- fxi(Yo,+Zo,)+0(f?)
Y =cos(y—6/2)—cos(a—0/2)
Z=sin(y—0/2)+sin(a—0/2)+sin(6/2)

Solve for Y=Z=0 to remove all first order error terms



CORPSE pulses
replace . bya S y. witha— [+ y=0+2nx
o =2arx+16—arcsin|Lsin(6/2)]
f =2bx —2arcsin|[1sin(6/2)]
y=2cm++0—arcsin|Lsin(8/2)]

Choose a, b and ¢ such that all rotation angles are
positive. Best results occur at n=0, so a=b=1, c=0.



CORPSE pulses
Trajectories on the Bloch sphere for various initial
states after 60° naive and composite pulses




Infidelity

 |nfidelity is fourth order in f with a complex
dependence on 6. For case of 180° pulse

Five :1—f2(%j+0(f4)

2_
Fo :1_f4[12+72'32 4\/§7Z']+0(f6)




CORPSE pulses
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Simultaneous errors

* In the general case both pulse length errors
and off-resonance effects will occur at the
same time!
16 .
G(6,0)= exp(—z[(1+ 8)(cos¢c7x +singo, ) + fO'ZD

* Analysis gets a bit complicated...
e Can explore numerically



Simultaneous errors
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Contours plotted at 5% intervals for 180° pulses



Simultaneous errors

* |n corpsE sequences with no off-resonance
effects pulse length errors largely cancel, and
looks just like a naive pulse

* In BB1 sequences with no pulse length errors
the off-resonance effects in the W sequence
vanish to first order, so it looks almost like a
naive pulse

» SCROFULOUS is more sensitive to off-resonance



Theory and Practice

 Composite pulses suppress certain systematic
errors but are these really dominant?
— Random errors
— Phase errors
— Pulse transients

Christmas Plum Puddiné

* All the proof of a pudding is in the eating:
experiments are the only true test of reality
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Pulse length errors

Naive  NMR experiments on a
T, e sein it e
BB * BB1 works very much as
-

B4 is theoretically better
than BB1 but actually

AL \“”,Hﬂm performs slightly worse




Two gqubit gates

Naive
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BB1 can be extended to
make robust two qubit )“L _)HL
controlled phase gates W{HLWJLTJ&T

In a system with two different spin—spin couplings the
small term distorts evolution under the large term. BB1
controlled phase gates suppress this distortion.




BB1 and electron spins
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Electron paramagnetic resonance is just like NMR but
with electron spins and microwave control fields. BB1
works just the same



SQUIDs and CORPSE
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CORPSE gives extremely effective suppression
of off-resonance effects



Broadband wave plates
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The Poincaré sphere is
equivalent to the Bloch
sphere

Can be used to design
wave plates which work
well over very large
ranges of wavelength

No experiments yet...



Composite T pulses

* The special case of 7 pulses is particularly

simple, especially for 7 pulses built from
networks of & pulses

* Not particularly useful for quantum logic gates
but very useful for decoupling sequences
which suppress system—bath interactions
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Designing short robust NOT gates for quantum computation
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FIG. 2. (Color online) Fidelity achieved by (a) a simple pulse and composite pulses with n = 3 optimized to suppress first-order pulse
strength errors (b) and off-resonance errors (c). Fidelity is plotted as a function of the fractional pulse strength error € and the off-resonance
fraction f. Contours are drawn at 90%. 99%. and 99.9% fidelity, that is, logarithmically spaced infidelities with the inmost contour at an
infidelity of 1072,

With composite rotations made up from 3 pulses it is possible to achieve robustness to
either pulse strength error or off resonance error
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With 5 pulses or 7 pulses can do much better and can correct both types of error



Arbitrary precision T pulses

Can desigh composite pulses by writing the
fidelity as a Taylor series and deleting terms

F, (Wimperis, 1991) removes terms below €°
F, removes terms below 18" order

We hypothesised the F_ family which would
remove terms below order 2x3"

Now proved: Phys. Lett. A 377, 2860 (2013)



S. Husain et al. / Journal of Magnetic Resonance 230 (2013) 145-154
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The F_ family of
composite T pulses
corrects pulse
strength errors to
arbitrary precision.
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Fig. 1. Fidelity F and infidelity 7 as a function of pulse strength error ¢ for the F,
family of pulses from F; (plotted in red) to F5 (plotted in black). (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)



Arbitrary precision /2 pulses

Taylor series approach works but less well
Iterative approach of F, doesn’t work

Numerical searches found the W_ family: a
network of 4n T pulses and one /2 pulse
supressing all errors up to order 4n

More efficient than F, but numerical solutions
beyond W, are very hard to find

Can also make W_  pulses
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Problems

Numerical solutions beyond W, are very hard
Not obvious they even exist

Guang Hao Low et al. have found a way to
transform the trigonometrical equations into
polynomials, see arXiv:1307.2211

Can be proved that arbitrary orders exist
Finding them is still pretty challenging



Exotica

Can find relatives of F, with exotic reponses
The G, family is perfect at certain errors

The P, family has passband behaviour (works
well for small errors, no effect at large errors)

The N, family is hypersensitive to error

Families can all be combined in strange ways...
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Summary

Systematic errors are a real problem

Composite pulses are a good solution in
systems with qubit selectivity

Some pulses work better than others, and
theory is not always a good guide

BB1 is brilliant
Homonuclear NMR QIP is difficult



The future

* Applying composite pulses more widely

e Still useful work to be done on simultaneous
error tolerance

e Still using a lot of trial and error—no good
general theory of why it works



