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Setting the scene: Hamiltonians
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Errors

• We don’t know Hi exactly

• We can’t control He exactly

• So total evolution U will be wrong

• Is there some way of making U robust to small 

errors in Hi and He?



Systematic Errors

• Random errors are completely unknown

– Have to use error correction or DFS approaches

• Systematic errors are unknown but constant

• We can use reproducibility to reduce errors!

• In chaotic systems small errors build up 

catastrophically; we need anti-chaos where 

errors systematically cancel each other out!



Calibration

• If errors are constant why not just characterise 

them and calibrate them out?

• Works well for some errors, but consider

– Multiple qubits interacting with same fields

– Macroscopic ensembles in NMR systems

– Temporal ensembles and slowly varying fields

• RF amplifier power often oscillates with a 

period of about 20 minutes (temperature)



Systematic Errors

• Almost any QIP system with control fields will 

suffer from time variations in these fields

• Many systems will also have some sort of 

spatial ensemble

• Our aim is to produce logic gates which are 

robust to a distribution of control fields



NMR

• The methods I will 

describe were mostly 

developed for use in 

NMR and many papers 

use NMR language

• Important to know the 

basics!  But don’t worry 

too much about the 

details



NMR spin Hamiltonian
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Spin–spin coupling

• Assumes a system of two spin-1/2 nuclei in the liquid state

• Hamiltonian is much more complex in the solid state

• Spin-0 nuclei can obviously be ignored

• High-spin nuclei can be largely ignored (complex reasons) 



Weak coupling
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Spin–spin coupling

• Weak coupling approximation is to keep only the diagonal 

terms.  The coupling is truncated by the Zeeman terms 

(equivalent to first order perturbation theory)

• Good approximation in most NMR QIP systems
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Product Operators
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• Traditional notation developed in NMR

• Spins called I and S and spin–spin coupling called J

• Factors of ½ are incorporated into the spin operators

• Factors of 2 get moved around in ways that look strange 

unless you are used to it (and even then are a bit odd)

• Fundamentally equivalent to ordinary notation

• Don’t worry too much about it



Multi-spin Hamiltonian
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• Weak coupling approximation assumed

• Some spin–spin couplings may be negligible

Remember that this Hamiltonian only applies 

for spin-1/2 nuclei in the liquid state!



Energy scales

• The NMR transition frequency depends on the 

gyromagnetic ratio of the nucleus and the 

magnetic field strength

• Typical NMR transitions occur in the frequency 

range 50MHz to 800 MHz

• Very low energy compared with kT at room 

temperature!



Ensembles

• The NMR transition frequency is far too low to 

detect single photons directly

• Instead use macroscopic ensembles with 

many identical copies of each qubit

• Can’t achieve spatial localisation!

• Can’t achieve projective measurements!

• Spin states are (almost) always highly mixed!



Pseudo pure states

• Can be prepared in various ways not described here

• The maximally mixed state does not evolve and cannot be 

detected by NMR measurements so behaviour is identical to 

that of corresponding pure states

• The effective purity if the state p is very low and scales 

exponentially badly with n, the number of qubits, making 

large scale NMR QIP impractical
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Coherent control

• The low transition frequency means that are 

always in the coherent control regime

• Spontaneous lifetimes are extremely long

• Stimulated decay lifetimes are very long

• Easy to make strong coherent RF sources



Pulses

• A pulse is a short period of applied RF near 

resonance with one or more spins

• Spins near resonance are strongly affected

• Best understood in the rotating frame and 

making the rotating wave approximation

• Spins far from resonance evolve under the 

background Hamiltonian



Heteronuclear & Homonuclear

• In heteronuclear systems all the spins are of 

different nuclear species and so have very 

different Larmor frequencies

• In homonuclear systems two or more spins 

are of the same nuclear species and so have 

very similar Larmor frequencies, differing only 

by small chemical shifts

• Heteronuclear systems are much simpler!



Heteronuclear systems

• Control fields only affect one spin at a  time

• Work in a multiply rotating frame to remove 

all the Larmor frequencies
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Pulses and delays

• Both conventional NMR experiments and 

NMR QIP experiments are implemented by 

alternating short pulses and long delays

• As long as pulses are short enough can neglect 

evolution under H0

• Delays are used to implement two-qubit gates 

through spin–spin couplings



Single qubit gates

• On resonance pulses implement rotations 

• Write as θφ where θ=Ωτ is the angle of 

rotation and φ is the azimuth (phase) angle of 

the rotation in the xy-plane

• Can describe angles in radians or degrees or 

(for phase angles) using axis letter codes

• Other gates can be implemented as networks 

of pulses



NOT gate

• The NOT gate is a 180° rotation around x

• Only right up to (irrelevant) global phase

• Note that we consider this as a 180° evolution 

under σx/2 and not a 90° evolution under σx

• Other conventions are used leading to 

enormous potential for confusion!
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Hadamard gate

• The Hadamard gate is a 180° rotation around 

a tilted axis and is best implemented using a 

sequence of pulses

• Note that pulses are applied from left to right, 

the opposite way from propagators!

H 90 180 180 90
y x x y−= =



Phase gates

• Phase gates are equivalent to z-rotations and 

can be implemented using various sequences

• First approach (composite z-rotation) more 

common in conventional NMR, second 

approach more common in NMR QIP

90 90
z y x y

θ θ −=

/2180 180
z φ φ θθ +=



Two qubit gates

• Delays are used to implement two-qubit gates 

through spin–spin couplings

• Background Hamiltonian contains a complex 

network of couplings

• Can be simplified using spin echoes to remove 

unwanted couplings.  See any standard text!



Homonuclear systems

• A control field can in general affect two or 

more spins

• Low amplitude control fields restore selection 

but pulses now long compared with couplings

• Gets complicated!

• So ignore it for the moment…



Bloch Sphere
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States of a qubit can be 

described in spherical polar 

coordinates and then mapped 

onto points on the surface of 

the Bloch sphere

Mixed states live inside the 

sphere



Bloch vector

• Bloch vector points from origin of the Bloch 

sphere to the qubit state

• Can also derive it from density matrices

• s is a unit vector for a pure state
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Conventional NMR

• Spin starts off in thermal state along +z axis

• 90° pulse rotates spin into xy-plane where it 

precesses at the Larmor frequency

• Observe magnetisation and Fourier transform 

to get spectrum of transitions

• Usually described using Bloch vectors with 

some unusual sign conventions



Conventional NMR

FT



Pulse length errors

• Really pulse strength errors

• The RF coil produces a magnetic 
field which varies over the sample

• Control fields vary by ±10% over 
most of sample and more at edges

• Rotation angles vary in proportion

• Coils optimised for field strength 
not homogeneity



Off-resonance effects

• Occur when the control field is not 

exactly on resonance with a 

transition frequency

• Hamiltonian is the sum of the RF 

field and an off resonance term

• Evolution occurs around tilted axis

• Important in homonuclear spin 

systems



Errors
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Fidelities
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Infidelities
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Using the square of the fidelity definition just 

doubles the infidelity for small errors



Point-to-point fidelity
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Sometimes use the square root of this formula 

Common in conventional NMR where particular 

initial states are very important

Can extend to QIP by averaging over all initial states



Composite pulses

• Widely used in conventional NMR to 

tackle pulse length errors and off-

resonance effects

• Replace a single pulse by a sequence 

of pulses with same overall effect but 

greater tolerance of errors

Invented by Malcolm Levitt (Oxford Chemistry) during 

his undergraduate project!



Composite inversion

90x180y90x

Designed for point-to-

point transfer from +z to 

‒z in presence of pulse 

length errors.

Easily seen on Bloch 

sphere: error in outer 

pulses is largely 

corrected by inner pulse



Composite inversion

• Point to point fidelity 

is greatly improved

• But overall fidelity is 

unchanged!
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On average Levitt’s composite pulse is no better than 

a simple pulse (does better for some initial states but 

worse for others)



Fully compensating pulses

• For QIP we need a pulse that is error tolerant 

for any initial state

• Rarely needed in conventional NMR, but a few 

were designed as curiosities

• Known as fully compensating pulses, or Class 

A composite pulses or general rotors



Tycko’s pulse

Tycko’s composite inversion pulse 

1806018030018060 will perform 180x

with compensation of pulse length 

errors for any initial state

A robust NOT gate!
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SCROFULOUS pulses
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In the case θ=180° Tycko’s result is recovered; 

otherwise have to solve numerically



SCROFULOUS pulses

θ β φ1 φ2

30 93.0 78.6 273.3

45 96.7 73.4 274.9

90 115.2 62.0 280.6

180 180 60 300

Pulse angles for some 

choices of θx

Change pulse phase by 

offsetting φ1 and φ2

Fidelity as a function of 

pulse length error for 

180° pulse (NOT gate)



Designing composite pulses

• Tycko’s used a Magnus expansion to get a 

series expansion of the propagator in the error 

and set the first order error term to zero

• Have to also make the error free propagator 

do the right thing

• Finding a simultaneous solution to these two 

targets is difficult in the general case

• Depends on lucky initial guesses



Wimperis and error correction

• Wimperis’s key idea was to separate the two 

parts of the problem by combining an error 

prone main pulse with an error correcting “do-

nothing” pulse



BB1
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In the absence of errors this sequence does nothing.  

What happens with pulse length errors?



BB1 with errors
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BB1 with errors
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This sequence generates a pure error term, a 

rotation around σx with an angle proportional to 

the error ε and depending on φ1. 



BB1 with errors

The main pulse is equal to a perfect θ0 pulse 

followed by a rotation by εθ

Can make the two error terms cancel: choose

( )1 14 cos arccos / 4π φ θ φ θ π= − ⇒ = ± −

( ) ( ) ( )

( ) ( )1 1 1

,0 ,0 ,0

,3 4 cos ,0

V U U

W U

θ εθ θ

φ φ ε π φ

=

≈



BB1

Wimperis placed the correction sequence before

the main pulse

but can put it after the pulse or in the middle

( ) ( )1 1,0 ,3V Wθ φ φ

( ) ( ) ( )1 1/ 2,0 ,3 / 2,0V W Vθ φ φ θ



BB1 fidelity

• Removes the 1st order error term so expect 

the infidelity to be 4th order in ε, but actually

• Simultaneous removal of the 2nd order error 

term!  Very nice, but no obvious explanation

• Fidelity depends on θ but independent of 

where the W pulses are placed
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Fidelities and pulse length errors

SCROFULOUS BB1

Fidelities of NOT gates in presence of pulse length 

errors (dashed line is naïve pulse)



Off-resonance effects

• Consider a control field of strength ω1 at an 

offset δω from resonance.  What matters is 

the off-resonance fraction f=δω/ω1

• Rotation occurs around a tilted axis

Off-resonance effects on a 90°

excitation pulse for off-resonance

fractions f in the range 0 to 1 in 

steps of 0.1



Errors and infidelity

• Error is first order in f

• Infidelity is second order in f
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Inverse pulses

( ) ( ), ,U U φ φ πθ φ π θ φ θ θ ++ = − ⇒ = 1

Easy to make pulses with negative rotation angles

( ) ( ), ,V Vθ φ π θ φ+ = −

Still works with pulse length errors

( ) ( ), ,R Rθ φ π θ φ+ ≠ −

Doesn’t work with off-resonance effects: can only 

use physical (positive) angles



Composite inversion

90x180y90x

Designed for point-to-

point transfer from +z to 

‒z in presence of off-

resonance effects.

Seen on Bloch sphere: 

error in outer pulses is 

largely corrected by 

inner pulse



Tycko’s pulse

Tycko also discovered a composite 

90° pulse 385x320‒x25x which will 

perform 90x with moderate 

compensation of off-resonance 

effects for any initial state

Discovered by a numerical search 

but generalised as CORPSE gates



CORPSE pulses

replace by with
x x x x
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Solve for Y=Z=0 to remove all first order error terms
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CORPSE pulses

replace by with 2
x x x x
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Choose a, b and c such that all rotation angles are 

positive.  Best results occur at n=0, so a=b=1, c=0.

[ ]

[ ]

[ ]

1 1
2 2

1
2

1 1
2 2

2 arcsin sin( / 2)

2 2arcsin sin( / 2)

2 arcsin sin( / 2)

a

b

c

α π θ θ

β π θ

γ π θ θ

= + −

= −

= + −



CORPSE pulses

x y z

Trajectories on the Bloch sphere for various initial 

states after 60° naïve and composite pulses



Infidelity

• Infidelity is fourth order in f with a complex 

dependence on θ.  For case of 180° pulse
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CORPSE pulses

θ α β γ

30 367.6 345.1 7.6

45 371.5 337.9 11.5

90 384/3 318.6 24.3

180 420 300 60

Pulse angles for some 

choices of θx

Change pulse phase by 

offsetting from ±x

Fidelity as a function of 

off-resonance fraction 

for 180° pulse (NOT gate)



Simultaneous errors

• In the general case both pulse length errors 

and off-resonance effects will occur at the 

same time!

• Analysis gets a bit complicated…

• Can explore numerically
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Simultaneous errors

Naive

SCROFULOUS

CORPSE

BB1

Contours plotted at 5% intervals for 180° pulses



Simultaneous errors

• In CORPSE sequences with no off-resonance 

effects pulse length errors largely cancel, and 

looks just like a naïve pulse

• In BB1 sequences with no pulse length errors 

the off-resonance effects in the W sequence 

vanish to first order, so it looks almost like a 

naïve pulse

• SCROFULOUS is more sensitive to off-resonance



Theory and Practice

• Composite pulses suppress certain systematic 

errors but are these really dominant?

– Random errors

– Phase errors

– Pulse transients

• All the proof of a pudding is in the eating: 

experiments are the only true test of reality



Quantum counting

Homonuclear NMR quantum counting experiment.  

Using CORPSE 90° pulses removes artefacts arising 

from off-resonance effects.



Pulse length errors

• NMR experiments on a 
single spin with pulse 
strength varied by ±100%

• BB1 works very much as 
expected

• B4 is theoretically better 
than BB1 but actually 
performs slightly worse



Two qubit gates

BB1 can be extended to 

make robust two qubit

controlled phase gates

In a system with two different spin–spin couplings the 

small term distorts evolution under the large term.  BB1 

controlled phase gates suppress this distortion.



BB1 and electron spins

Electron paramagnetic resonance is just like NMR but 

with electron spins and microwave control fields.  BB1 

works just the same 



SQUIDs and CORPSE

Quantronium

SQUID

CORPSE gives extremely effective suppression 

of off-resonance effects



Broadband wave plates

• The Poincaré sphere is 

equivalent to the Bloch 

sphere

• Can be used to design 

wave plates which work 

well over very large 

ranges of wavelength

• No experiments yet…



Composite π pulses

• The special case of π pulses is particularly 

simple, especially for π pulses built from 

networks of π pulses

• Not particularly useful for quantum logic gates 

but very useful for decoupling sequences

which suppress system–bath interactions



With composite rotations made up from 3 pulses it is possible to achieve robustness to 

either pulse strength error or off resonance error



5

7

With 5 pulses or 7 pulses can do much better and can correct both types of error



Arbitrary precision π pulses

• Can design composite pulses by writing the 

fidelity as a Taylor series and deleting terms

• F1 (Wimperis, 1991) removes terms below ε6

• F2 removes terms below 18th order

• We hypothesised the Fn family which would 

remove terms below order 2x3n

• Now proved: Phys. Lett. A 377, 2860 (2013)



The Fn family of 

composite π pulses 

corrects pulse 

strength errors to 

arbitrary precision.



Arbitrary precision π/2 pulses

• Taylor series approach works but less well

• Iterative approach of Fn doesn’t work

• Numerical searches found the Wn family: a 

network of 4n π pulses and one π/2 pulse 

supressing all errors up to order 4n

• More efficient than Fn but numerical solutions 

beyond W4 are very hard to find

• Can also make Wn π pulses



Results from NMR experiments with artificial “errors” 



Problems

• Numerical solutions beyond W4 are very hard

• Not obvious they even exist

• Guang Hao Low et al. have found a way to 

transform the trigonometrical equations into 

polynomials, see arXiv:1307.2211

• Can be proved that arbitrary orders exist

• Finding them is still pretty challenging



Exotica

• Can find relatives of Fn with exotic reponses

• The Gn family is perfect at certain errors

• The Pn family has passband behaviour (works 

well for small errors, no effect at large errors)

• The Nn family is hypersensitive to error

• Families can all be combined in strange ways…



The Gn family from G0 to G3 The composite sequences 

F, GF, FGF and F2GF



The Pn family from P0 to P3 The Nn family and the 

composite sequences G, 

NG, N2G and N3G



Summary

• Systematic errors are a real problem

• Composite pulses are a good solution in 

systems with qubit selectivity

• Some pulses work better than others, and 

theory is not always a good guide

• BB1 is brilliant

• Homonuclear NMR QIP is difficult



The future

• Applying composite pulses more widely

• Still useful work to be done on simultaneous 

error tolerance

• Still using a lot of trial and error—no good 

general theory of why it works


