Quantum Information Processing

Jonathan Jones

Quantum parallel processing

Technologies

optical lattices

cavity QED

NMR

superconductors

quantum dots

ion traps

DiVincenzo criteria

- 1. Scalable well characterized qubits
- 2. Initialization
- 3. Long decoherence times
- 4. Universal quantum gates
- 5. Readout (measurement)
- 6. Interconvert stationary and flying qubits
- 7. Transmit flying qubits

SILURIT

ARDA Roadmap 2004

Table 4.0-1The Mid-Level Quantum Computation Roadmap: Promise Criteria

	The DiVincenzo Criteria								
QC Approach	Quantum Computation						QC Networkability		
	#1	#2	#3	#4	#5		#6	#7	
NMR	Ô	Ô	Ø	\bigotimes	Ô		Ô	Ô	
Trapped Ion	6	\bigcirc	Ø	\bigcirc	\bigcirc		\odot	\odot	
Neutral Atom	6	\bigcirc	Ø		\odot		6	Ô	
Cavity QED	Ô	\bigotimes	\diamond	Ô	\bigotimes		Ô	\odot	
Optical	Ô	\odot	\mathbf{Q}	\odot	\odot		8	\bigotimes	
Solid State	6	\odot	Ø	Ô	Ø		Ô	Ô	
Superconducting	6	\bigcirc	Ø	Ô	Ô		Ô	Ô	
Unique Qubits	This fie	This field is so diverse that it is not feasible to label the criteria with "Promise" symbols.							

Legend: 😔 = a potentially viable approach has achieved sufficient proof of principle

🌀 = a potentially viable approach has been proposed, but there has not been sufficient proof of principle

💼 = no viable approach is known

Earnshaw's theorem

FIG. 8. Mechanical analogue model for the ion trap with steelball as "particle."

Ion trap for ⁴⁰Ca⁺ ions

Trapped ⁴⁰Ca⁺ ions

Fig. 5. Examples of some small linear strings of ions. The average distance between two ions is about 10 μ m. The exposure time for the CCD camera was 1 s. The measured resolution of the imaging system consisting of the lens and CCD camera is better than 4 μ m

Optical traps

random filling of optical lattice after loading with a BEC The atoms repel each other and do not want to occupy the same site

Regular filling by increasing the interaction in a deep trap

Optical lattice phase gates

time atom 1 atom 2

1)

0

 $|0\rangle$

⁴⁰Ca⁺ ion readout

Fig. 1. Level scheme of ${}^{40}Ca^+$

Two spin system

- A homonuclear system of two spin 1/2 nuclei: four energy levels with nearly equal populations
- Equalise the populations of the upper states
 leaving a small excess in the lowest level

Two spin system

- A homonuclear system of two spin 1/2 nuclei: four energy levels with nearly equal populations
- Equalise the populations of the upper states
 leaving a small excess in the lowest level

- A "pseudo-pure" state
- Excess population is exponentially small

NMR levels and specta

NMR readout

Large scale ion trap QC

Large scale ion experiments

