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Quantum parallel processing
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Di1Vincenzo criteria
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Scalable well characterized qubits
Initialization

Long decoherence times

Universal quantum gates

Readout (measurement)

Interconvert stationary and flying qubits
Transmit flying qubits
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ARDA Roadmap 2004

Table 4.0-1

The Mid-Level Quantum Computation Roadmap: Promise Criteria
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This tield is so diverse that it is not feasible to label the criteria with “Promise” symbols.

Legend: = a potentially viable approach has achieved sufficient proof of principle

@ = a potentially viable approach has been proposed, but there has not been sutticient proof of principle

6 = no viable approach is known




Earnshaw’s theorem

. Potential in the lon Trap

FIG. 8. Mechanical analogue model for the ion trap with steel-
. ball as “particle.”




[on trap for ¥’Ca* ions




Trapped *’Ca* ions
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Fig. 5. Examples of some small linear strings of ions. The average distance
between two ions is about 10 pm. The exposure time for the CCD camera
was | s. The measured resolution of the imaging system consisting of the
lens and CCD camera is better than 4 pum



Optical traps

I oy

Fa

L
TEMoo

BEAM Fgrad




laser

random filling of optical lattice
after loading with a BEC
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The atoms repel
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each other and do
not want to occupy
the same site
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Regular filling by increasing
the interaction in a deep trap



Optical lattice phase gates
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0Cat ion readout

866 nm

Fig. 1. Level scheme of “°Ca™
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T'wo spin system

e A homonuclear system of L9
two spin 1/2 nuclei: four D0 O
energy levels with nearly — —
equal populations OO0

e Equalise the

populations of the [®® oD OO @@] o0

upper states “ :
leaving a small A “pseudo-pure” state

excess in the Excess population is
lowest level exponentially small



NMR levels and specta
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NMR readout
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Large scale ion trap QC
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Large scale ion experiments
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