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Chapter 1

The Dirac Notation

The purpose of this chapter is to provide an introduction to Dirac’s notation [Dirac, Shankar 1994]
for describing quantum information processing. Many areas of quantum mechanics studied in
undergraduate degrees can be described without using Dirac notation, and its importance is unclear.
In other areas, however, the advantages of Dirac notation are huge, and it is essentially the only
notation in use. This is particularly true of quantum information theory [Nielsen 2000, Stolze 2004].

1.1 Hilbert Space

Dirac’s notation is closely related to that used to describe abstract vector spaces known as Hilbert
spaces, and many formal arguments about the properties of quantum systems are in fact arguments
about the properties of Hilbert spaces. Here we aim to steer a careful course between the twin perils
of excessive mathematical sophistication and of taking too much on trust. The description given
here is closely based on that of [Goldman 1988]; for an alternative view try [Gasiorowicz 2003]. For
a detailed introduction to vector spaces see [Halmos 1974].

A Hilbert space is an abstract vector space. As such, it has many properties in common with the
ordinary three dimensional vectors which you studied in the first year, but it also differs in several
important ways. Firstly, the vector space is not three dimensional, but can have any number of
dimensions1. Secondly, when the vectors are multiplied by scalar numbers these numbers can be
complex. Thirdly, when two vectors are combined by taking their scalar product (analogous to the
vector dot product, and often called the inner product), the result depends on the order in which
the vectors are taken, such that

v.u = (u.v)∗ (1.1)

where the asterisk indicates taking the complex conjugate. Clearly the scalar product of any vector
with itself is real, as

u.u = (u.u)∗ (1.2)

and the only numbers equal to their complex conjugates are real. It can also be shown that u.u is
positive, and its positive square root (the norm of u) can be thought of as the length of u.

1The description below largely assumes that the number of dimensions is finite, but it is also possible to extend
these results to infinite dimensional spaces.
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As usual it is convenient to describe vectors by taking linear combinations of a set of basis
vectors

v =
∑

i

αiui (1.3)

where the αi are complex coefficients, and the ui have the property that

ui.uj = δij (1.4)

where δij, the Kronecker delta, is equal to 1 if i = j, and is equal to 0 if i 6= j. Such a basis is said
to be orthonormal. The coefficients αi can be easily found, as

ui.v = αi (1.5)

or
v.ui = α∗i (1.6)

where the second version follows from equation 1.1.

1.2 Dirac notation

The essence of Dirac notation is that the state of a quantum system is fully described by a vector
in an associated Hilbert space. The notation makes a clear distinction between vectors appearing
on the right hand side and on the left hand side of scalar products: vectors of the first kind are
called ket vectors, or just kets, and are written as |ψ〉, while vectors of the second kind are called
bra vectors, or bras, and written as 〈ψ|. The scalar product of a bra and a ket (usually called the
inner product) is represented by the bra(c)ket notation

〈φ|ψ〉 (1.7)

and equation 1.1 is written as
〈φ|ψ〉 = 〈ψ|φ〉∗. (1.8)

As before, bras and kets are conveniently expanded in an orthonormal basis, that is a set of kets
such that

〈i|j〉 = δij. (1.9)

Any ket |ψ〉 can then be written as

|ψ〉 =
∑

i

αi|i〉 (1.10)

where
〈i|ψ〉 = αi. (1.11)

The corresponding bra can be written as

〈ψ| =
∑

i

α∗i 〈i| (1.12)

with
〈ψ|i〉 = α∗i , (1.13)
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so that the set of bras 〈i| forms an orthonormal basis for the bras. The inner product between 〈φ|
and |ψ〉 can now be written as

〈φ|ψ〉 =
∑

i

∑
j

β∗i 〈i|αj|j〉 =
∑
i,j

β∗i αj〈i|j〉 =
∑
i,j

β∗i αjδij =
∑

i

β∗i αi (1.14)

1.3 Operators

After kets and bras, the most important elements of Dirac notation are operators, which transform
kets into other kets according to

A|ψ〉 = |ψ′〉. (1.15)

The action of an operator on a bra is analogous, but the operator must be written on the right
hand side of the bra:

〈φ|A = 〈φ′|. (1.16)

The relationship between these two actions is defined by the fact that

〈φ|ψ′〉 = 〈φ′|ψ〉 (1.17)

and so the inner product is written as
〈φ|A|ψ〉 (1.18)

and it is not necessary to specify whether the operator acts on the ket or the bra. These operators
are linear, so that

A (|ψ〉+ |φ〉) = A|ψ〉+ A|φ〉 (1.19)

and
(A + B) |ψ〉 = A|ψ〉+ B|ψ〉. (1.20)

The product of two operators acting on a ket is defined by acting first with the rightmost operator,
so that

AB|ψ〉 = A (B|ψ〉) . (1.21)

As discussed above, an operator can be thought to act either on a ket or on a bra, but these
operations are not quite identical. In particular the fact that A|ψ〉 = |ψ′〉 does not in general imply
that 〈ψ|A = 〈ψ′|. It is, however, true that

〈ψ|A† = 〈ψ′| (1.22)

where A† is an operator2 closely related to A, called the Hermitian conjugate or adjoint of A. The
form of this operator will be considered below; for the moment it suffices to note that

〈φ|A|ψ〉 = 〈ψ|A†|φ〉∗ (1.23)

and that this can be used to show that (A†)† = A.

2Readers will probably be familiar with operators written as a and a† which are used as lowering and raising
operators in descriptions of the harmonic oscillator, or (equivalently) as annihilation and creation operators in
treatments of light; the relation between these two (apparently distinct) uses of the dagger symbol will eventually
become clear.
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One important set of operators is the set of projection operators or projectors. Combining
equations 1.10 and 1.11 gives

|ψ〉 =
∑

i

〈i|ψ〉|i〉 (1.24)

and since the 〈i|ψ〉 inner products are just numbers, they can be swapped with the kets |i〉 to obtain

|ψ〉 =
∑

i

|i〉〈i|ψ〉 =
∑

i

Pi|ψ〉 (1.25)

where Pi = |i〉〈i| is an operator which projects |ψ〉 onto the basis ket |i〉, that is obtains the
component of |ψ〉 which is parallel to |i〉. The form of Pi is called an outer product, and other
examples will be seen later3. In the same way we can write

〈ψ| =
∑

i

〈ψ|i〉〈i| =
∑

i

〈ψ|Pi. (1.26)

As the two equations above are valid for any ket or bra, it follows that
∑

i

|i〉〈i| =
∑

i

Pi = 11 (1.27)

where 11 is the identity operator, which leaves all bras, kets, and operators unchanged, so that

11|ψ〉 = |ψ〉, 〈ψ|11 = 〈ψ|, A11 = 11A = A. (1.28)

This result is called the closure theorem.
Operators can be grouped into various classes according to their properties, and two particularly

important groups are Hermitian and unitary operators. Hermitian operators are simply those which
are equal to their adjoint

H = H† (1.29)

while unitary operators have their inverse equal to their adjoint, so that

UU † = U †U = 11. (1.30)

Most physical processes are described by Hermitian or unitary operators, and as we shall see below
there is a close link between them.

1.4 Vectors and matrices

As shown in equation 1.10, any ket can be thought of as a linear combination of a set of orthonormal
basis vectors. Provided there is some agreed basis, it clearly suffices just to list the coefficients:
thus for a ket in a three dimensional Hilbert space we can write

|ψ〉 =




α1

α2

α3


 (1.31)

3In the discussion here I only consider projection operators which project onto the basis states, but there is
nothing fundamental about this restriction, and operators which project onto general states can also be considered.
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where the coefficients form a column vector. A bra can be written in a similar way

〈ψ| = (
α∗1 α∗2 α∗3

)
(1.32)

where the coefficients now form a row vector. Reconsidering equation 1.14 shows that when bras
and kets are written in this form the inner product is nothing more than a conventional matrix
product.

It is also possible to describe operators using a matrix. Clearly

A|ψ〉 = 11A11|ψ〉 (1.33)

and applying the closure theorem gives

A|ψ〉 =
∑
i,j

|i〉〈i|A|j〉〈j|ψ〉 (1.34)

=
∑
i,j

〈i|A|j〉〈j|ψ〉|i〉 (1.35)

where we have used the fact that the two inner products in equation 1.34 are just numbers and so
can be moved to the front of the formula. Next, note three things. Firstly, using equation 1.11, we
know that 〈j|ψ〉 = αj. Secondly as 〈i|A|j〉 is just a number we can choose to write it as an element
Aij of a matrix A. Finally we can use equations 1.10 and 1.11 to expand A|ψ〉 in the same way as
|ψ〉,

A|ψ〉 =
∑

i

βi|i〉. (1.36)

Combining all these results gives

βi =
∑

j

Aijαj (1.37)

and so the coefficients in the new state are obtained from those in the old state by multiplying
them by A using conventional matrix multiplication.

Although explicit matrix forms can be worked out as described above, there can be simpler
methods in specific cases. As an example consider the matrix representation of a general projection
operator

|ψ〉〈ψ| =



α1

α2

α3


 (

α∗1 α∗2 α∗3
)

=




α1α
∗
1 α1α

∗
2 α1α

∗
3

α2α
∗
1 α2α

∗
2 α2α

∗
3

α3α
∗
1 α3α

∗
2 α3α

∗
3


 (1.38)

This matrix form for an outer product is usually called a density matrix.
Since a matrix can be used to describe an operator, it is instructive to consider how the product

of two operators can be described. This can be achieved by considering a single element of the
matrix description of the product

〈i|BA|j〉 = 〈i|B11A|j〉 (1.39)

=
∑

k

〈i|B|k〉〈k|A|j〉 (1.40)
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or
(BA)ij =

∑

k

BikAkj (1.41)

so that the matrix describing the product of two operators is simply the product of their individual
matrices.

It is also instructive to consider the relationship between the matrix descriptions of an operator
A and its adjoint A†. Applying equation 1.23 to the basis vectors gives

〈i|A†|j〉 = 〈j|A|i〉∗ (1.42)

or
(A†)ij = A∗

ji (1.43)

so that in matrix terms taking the adjoint is equivalent to taking the complex conjugate of the
matrix transpose. From this fact it is straightforward to deduce that (AB)† = B†A†.

1.5 Eigenvalues and eigenvectors

Consider an operator A and a ket |ψ〉 such that

A|ψ〉 = λ|ψ〉 (1.44)

where λ is just a number. The ket |ψ〉 is then said to be an eigenket of the operator A, with
eigenvalue λ. Alternatively, and equivalently, the vector representation of |ψ〉 is an eigenvector of
the matrix A with eigenvalue λ.

Eigenvalues are most conveniently determined using the matrix formalism. In a Hilbert space
with n dimensions, equation 1.44 is equivalent to n simultaneous equations of the form

∑
j

Aijaj = λai (1.45)

or ∑
j

(Aij − λδij)aj = 0. (1.46)

These simultaneous equations only have non-trivial solutions if the determinant of the coefficients
on the left hand side is zero, so that

∣∣∣∣∣∣∣∣∣

(A11 − λ) A12 . . . A1n

A21 (A22 − λ) . . . A2n
...

...
. . .

...
An1 An2 . . . (Ann − λ)

∣∣∣∣∣∣∣∣∣
= 0. (1.47)

This determinant equation is in fact an nth order polynomial in λ, whose n roots are the n eigen-
values of the matrix A. It should be noted that although the exact form of the determinant
equation (1.47) seems to depend on the choice of basis in which A is described, the eigenvalues are
fundamental properties of the operator A (equation 1.44) and will be the same in any basis.
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Once the eigenvalues have been determined, the eigenvector corresponding to each eigenvalue
can be found by solving the set of simultaneous equations (1.46). Unlike eigenvalues, the eigenvec-
tors of an operator obviously do depend on the basis used to describe the operator. The eigenkets
of the operator, however, are fundamental properties and do not depend on the choice of basis.

The method described above only gives the ratios of the coefficients describing the eigenvector,
but this is quite proper as the eigenkets (equation 1.44) are only defined up to a multiplicative
factor. It is customary to choose kets of unit norm, but this does not completely define the ket,
which can still be multiplied by any complex number of the form eiφ. A more important source of
uncertainty, however, may arise when an operator has degenerate eigenvalues, arising from repeated
roots in the eigenvalue polynomial. In this case linear combinations of eigenvectors corresponding
to the same eigenvalue will also be eigenvectors with the same eigenvalue.

The process of finding eigenvalues and eigenvectors of a matrix is equivalent to diagonalizing
the matrix: the matrix A can be written in the form

A = SΛS−1 (1.48)

where Λ is a diagonal matrix with the eigenvalues of A along the diagonal and S is formed from
the eigenvectors of A.

1.6 Operator trace

The trace of an operator is a particularly important property. As before it is most simply defined
by using a matrix description

tr(A) =
∑

i

〈i|A|i〉 =
∑

i

Aii (1.49)

but its value does not depend on the basis. This is most easily seen by writing the matrix A in
diagonal form and then using the fact that the trace of a product of matrices is invariant under
cyclic permutations of the product. Thus

tr(A) = tr(SΛS−1) = tr(ΛS−1S) = tr(Λ) (1.50)

and so the trace of an operator is equal to the sum of its eigenvalues.

1.7 Hermitian operators

As mentioned above, an operator A is Hermitian if it is equal to its adjoint, A = A†. Hermitian
operators play a key role in quantum mechanics, and have many useful properties.

Firstly, the eigenvalues of a Hermitian operator are always real. Suppose |a〉 is an eigenket of
A with eigenvalue a, so that

A|a〉 = a|a〉, (1.51)

or, equivalently,
〈a|A|a〉 = 〈a|a|a〉 = a〈a|a〉. (1.52)

Using equation 1.23 gives
〈a|A†|a〉 = (〈a|a|a〉)∗ = a∗〈a|a〉 (1.53)
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and since A = A† we can immediately deduce that a = a∗. Thus a must be real.
Secondly, the eigenkets of a Hermitian operator are mutually orthogonal. Consider two eigenkets

such that
A|a1〉 = a1|a1〉, A|a2〉 = a2|a2〉. (1.54)

Since A is Hermitian these can be rewritten as

〈a1|A = 〈a1|a1, 〈a2|A = 〈a2|a2, (1.55)

and so the inner product 〈a2|A|a1〉 can be expanded in two different ways:

〈a2|A|a1〉 = a1〈a2|a1〉 = a2〈a2|a1〉, (1.56)

or
(a1 − a2)〈a2|a1〉 = 0. (1.57)

The situation is simplest when the two eigenvalues are different, so that a1 − a2 6= 0; in this case
equation 1.57 immediately requires that 〈a2|a1〉 = 0, so that the kets |a2〉 and |a1〉 are orthogonal.
Things are slightly more complex in the presence of degenerate eigenvalues, but in this case it can
be shown that it is always possible to take linear combinations of the corresponding eigenkets to
obtain orthogonal kets.

Taken together these results imply4 that for any Hermitian operator in an n dimensional Hilbert
space, it is always possible to find n orthonormal eigenkets of the operator. Clearly these orthonor-
mal eigenkets provide a natural basis for describing the operator.

1.8 Commutators

When two operators, A and B are applied in sequence to a ket |ψ〉 it usually matters which order
they are applied in, so that

BA|ψ〉 6= AB|ψ〉 (1.58)

in general. More fundamentally we note that operator multiplication (like matrix multiplication)
is not commutative, so that BA 6= AB. In some cases, however, the operators do have the property
that BA = AB, and in this case the operators are said to commute5. This distinction is usually
made by considering the commutator of the two operators

[A,B] = AB −BA (1.59)

so that two operators commute if their commutator is zero.
Commutators play a key role in quantum mechanics, and it can be useful to consider their

properties in the abstract. To give two trivial examples, it is obvious that

[B, A] = BA− AB = −[A, B] (1.60)

4This is not a formal proof, as it assumes that the eigenvalues and eigenkets always exist, but a more formal
proof is possible and the result is correct.

5Note that for two operators to commute it must be true that BA|ψ〉 = AB|ψ〉 for every ket |ψ〉, so that we can
write BA = AB; it is not sufficient if the equality only holds for some particular kets.
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and that

tr([A, B]) = tr(AB −BA) (1.61)

= tr(AB)− tr(BA) (1.62)

= 0 (1.63)

where the last line has used the cyclic invariance of the trace.

1.9 Unitary operators

A unitary operator U was previously defined as an operator whose inverse is equal to its adjoint,
but a more fundamental definition is that a unitary operator does not change the norm of a ket.
We can now show how these two definitions are related. Consider some arbitrary ket |ψ〉, such that

U |ψ〉 = |ψ′〉 and 〈ψ|U † = 〈ψ′|. (1.64)

It is clear that

〈ψ′|ψ′〉 = 〈ψ|U †U |ψ〉 (1.65)

= 〈ψ|U−1U |ψ〉 (1.66)

= 〈ψ|ψ〉 (1.67)

as required. In a similar vein it can also be shown that unitary operators also leaves the scalar
product between any two kets unchanged6.

As with Hermitian operators, unitary operators play a central role in quantum mechanics, and
have many important features. For example, we note that the product of two unitary operators U
and V is itself unitary, since

UV (UV )† = UV V †U † = UU † = 11. (1.68)

More interestingly, it can be shown that the eigenvalues of a unitary operator all have modulus
one, and that the eigenvectors of a unitary matrix are orthogonal. Both of these properties can be
deduced by considering two eigenkets of U , |u1〉 and |u2〉, with eigenvalues λ1 and λ2. Clearly

〈u2|u1〉 = 〈u2|U †U |u1〉 (1.69)

= λ∗2λ1〈u2|u1〉 (1.70)

where the first line results from the fact that U †U = 11, and the second line comes from the
fundamental properties of operators. Thus

(λ∗2λ1 − 1)〈u2|u1〉 = 0. (1.71)

Choosing |u2〉 = |u1〉 leads immediately to λ∗1λ1 = 1, showing that the eigenvalues have modulus
one as required. The proof that the eigenvectors are orthogonal is virtually identical to that used
for Hermitian operators above.

6This property suggests that unitary operators can be considered as changing between two different bases for
describing a system, and this is indeed the case.
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Finally we consider an important link between unitary and Hermitian operators. Since the
eigenvalues of a unitary operator have modulus one, they can all be written in the form

λj = exp(−iaj) (1.72)

where the numbers aj are real. These numbers can be though of as the eigenvalues of another
operator A which has the same eigenkets as U . Since the eigenvalues of A are real, A must itself
be Hermitian. In general we can write

U = exp(−iA) (1.73)

connecting any unitary operator with its associated Hermitian operator. The meaning of the
exponential of an operator is most simply described by considering the exponential of a matrix,
and for a diagonal matrix this process is simple:

exp

[(
a 0
0 b

)]
=

(
1 0
0 1

)
+

(
a 0
0 b

)
+

1

2!

(
a 0
0 b

) (
a 0
0 b

)
+ . . . (1.74)

=

(
1 + a + a2/2 + . . . 0

0 1 + b + b2/2 + . . .

)
(1.75)

=

(
exp[a] 0

0 exp[b]

)
. (1.76)

The exponential of a general matrix can be calculated in a similar way by first diagonalizing the
matrix and then noting that

exp[SΛS−1] = S exp[Λ]S−1. (1.77)

This result is easily proved by using a series expansion of the exponential function, as shown above,
and canceling matching pairs of S−1 and S matrices. More fundamentally, S and S−1 are the
matrices which transform between the basis we happen to be working in, and the eigenbasis of the
operator, in which its description is naturally diagonal.

The appearance of complex exponentials in equation 1.73 suggests that it might be useful to
replace exponentials by sine and cosine terms, and in many situations this is indeed the case. This
also suggests that unitary transformations can be thought of as rotations. in fact this property
follows immediately from the fact that unitary transformations leave the lengths of kets and the
angles between them unchanged.

1.10 Physical systems

At last we can proceed to see how Dirac notation can be used to describe a physical system. The
most important property of the system is its Hamiltonian operator H which described the energy
of the system. According to the time independent Schrödinger equation the Hamiltonian has an
associated set of eigenstates

H|j〉 = ~ωj|j〉 (1.78)

which form an orthonormal basis for the system. As the eigenvalues of the Hamiltonian (given by
~ωj) correspond to the energies of the eigenstates they must be real, and so H must be Hermitian.
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The most general state of the system is then some superposition, or linear combination, of these
basis states,

|ψ〉 =
∑

j

αj|j〉. (1.79)

The evolution of the system is given by the time dependent Schrödinger equation,

∂

∂t
|ψ〉 = −i

H
~
|ψ〉 (1.80)

which has the solution
|ψ(t)〉 = U(t)|ψ(0)〉 (1.81)

with
U(t) = exp(−i(H/~)t). (1.82)

The evolution of quantum states can also be described using the compact notation

|ψ〉 Ht−→ U |ψ〉. (1.83)

Since H is Hermitian, the evolution operator U , usually called the propagator, must be unitary.

1.11 Time-dependent Hamiltonians

The discussion above assumes that the Hamiltonian is time-independent, that is it does not vary
with time. This will not be true in complicated systems, which are controlled by varying the
Hamiltonian. In many cases, however, the Hamiltonian is piecewise constant, that is it has a
constant value for some finite length of time, and is then replaced by a different constant value for
another finite time period, and so on. In this case the evolution can be described using a series of
propagators

|ψ〉 H1t1−→H2t2−→H3t3−→ U3U2U1|ψ〉 (1.84)

with U1 = exp[−i(H1/~)t1] and so on. Note that the sequence of Hamiltonians is normally written
with time running from left to right (that is the leftmost Hamiltonian is the first to be applied),
while the sequence of propagators is always written from right to left, as the rightmost propagator
is applied first. It is, of course, possible to combine the sequence of propagators into a single
propagator, U = U3U2U1, by matrix multiplication.

The situation is much more complicated when the Hamiltonian varies continuously with time.
It is, of course, possible to write down a formal solution of the form of equation (1.84), but this is
not generally a useful approach. For the moment this issue will simply be ignored.

1.12 Global phases

The discussion above has glossed over one important aspect of using kets to represent the state
of physical systems. The description of a physical state as a linear combination of basis states
(equation 1.79) provides too much information, as the kets |ψ〉 and

eiφ|ψ〉 =
∑

j

eiφαj|j〉. (1.85)
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describe the same physical state. It is safe to use this approach as long as you remember that two
kets differing only by an overall phase shift correspond to the same state. One advantage of the
density matrix description of states is that this extraneous phase does not appear, since the two
kets are represented by the same matrix

eiφ|ψ〉〈ψ|e−iφ = |ψ〉〈ψ|. (1.86)

It is vital to remember, however, that states are only invariant under overall phases (often called
global phase shifts), and changes in the relative phases of the terms contributing to a superposition
are important!
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Chapter 2

Quantum Information

After all this underlying theory, we will finally turn to quantum information processing. The basic
element used in quantum information is the quantum bit, or qubit. This is simply a physical system
with two energy levels, which we shall call |0〉 and |1〉. Taking the standard approach of quantum
information theory, we shall not worry too much about the properties of these states, or even what
their energies are; we shall simply assume that they are eigenstates of the Hamiltonian with known
eigenvalues (that is, known energies). This approach allows us to concentrate on the fundamental
properties of the system, without all the tedious solving of complicated differential equations.

Classical information processing is performed using bits, which are just two state systems, with
the two states called 0 and 1. By grouping bits together we can represent arbitrary pieces of
information, and by manipulating these bits we can perform arbitrary computations. We can in
principle perform classical information processing on our quantum system by using the two states
|0〉 and |1〉 as our logical states 0 and 1 and proceeding in the usual fashion1, but this misses the
point. A qubit2 is not confined to these two states, but can be found in arbitrary superposition
states. Although it is not immediately obvious what a state like

|ψ〉 = α|0〉+ β|1〉 (2.1)

actually means in information processing terms, it is clear that quantum bits are in some sense more
powerful than their classical equivalents. Quantum information processing is, of course, the art of
exploiting these superposition states to perform information processing tasks which are impossible
for classical systems3.

1There are a few technical issues arising in this approach, which is called Reversible Computation; see
[Feynman 1996] for details.

2There are many possible physical implementations of a qubit, such as spin states of electrons or atomic nuclei,
charge states of quantum dots, atomic energy levels, vibrational states of groups of atoms, polarization states of
photons, or paths in an interferometer. At this stage the physical implementation is not important: the idea of a
qubit is to abstract the discussion away from physical details. Note, however, that the two spin states of a spin-1/2
particle provide a particularly natural implementation of a qubit, and the language of spins is frequently used.

3Just as the real power of classical information processing requires groups of bits, the real advantages of quantum
information processing only become clear in systems with two or more qubits; for simplicity, however, we are confining
ourselves to single isolated qubits at the moment
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2.1 The Bloch sphere

The enormous flexibility of a single qubit in comparison with a classical bit can be most clearly
seen using the Bloch sphere description of a qubit. This also provides a simple but powerful way
of visualizing the behavior of a qubit. We begin by looking again at the general state of a single
qubit, equation (2.1), and noting that this ket must have unit norm, so that |α|2 + |β|2 = 1. The
fact that the state does not change under global phase shifts means that we can always choose α
to be real, and the normalization constraint is easily imposed by making α and β depend on the
cosine and sine of a single parameter. As discussed below, a particularly useful form is to write

|ψ〉 = cos(θ/2)|0〉+ eiφ sin(θ/2)|1〉 (2.2)

where 0 ≤ θ ≤ π and 0 ≤ φ < 2π. Note that θ = 0 corresponds to |ψ〉 = |0〉, and θ = π corresponds
to |ψ〉 = |1〉; in these extreme cases the value of φ is irrelevant.

There is an obvious analogy between the variables θ and φ used above and those used in spherical
polar coordinates. Clearly any ket |ψ〉 can be associated with a single point on the surface of a
sphere of radius 1 with co-latitude and azimuth angles θ and φ; this sphere is usually called the
Bloch sphere. Alternatively (and entirely equivalently) a state can be represented as a unit vector
(connecting the origin and a point on the Bloch sphere), called a Bloch vector.

The two basis states |0〉 and |1〉, which correspond to the states 0 and 1 of a classical bit, lie at
the north and south poles of the Bloch sphere, while a qubit can lie anywhere at all on the surface.
One interesting group of states is the set of equally weighted superpositions, with |α| = |β| = 1/

√
2,

which lie on the equator of the Bloch sphere, with the exact position determined by the relative
phase of α and β.

2.2 Density matrices

As described previously, it is frequently convenient to describe the state of a qubit using a vector,
written using the basis states |0〉 and |1〉 (the computational basis). Thus equation (2.1) can be
written as

|ψ〉 =

(
α
β

)
, (2.3)

while the corresponding bra can be written as

〈ψ| = (
α∗ β∗

)
. (2.4)

The basis states, of course, take the simple forms4

|0〉 =

(
1
0

)
and |1〉 =

(
0
1

)
. (2.5)

Bras and kets are normally combined by taking the inner product, such as

〈ψ|ψ〉 =
(
α∗ β∗

) (
α
β

)
= α∗α + β∗β = 1 (2.6)

4There is a potential ambiguity in any description of quantum bits, as to whether |0〉 and |1〉 are defined as shown
here, or the other way round. Fundamentally, of course, the choice does not matter, as long as one is consistent.
Here I follow the most common notation, but both approaches are in use.
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but they can also be combined using the outer product

|ψ〉〈ψ| =
(

α
β

) (
α∗ β∗

)
=

(
αα∗ αβ∗

βα∗ ββ∗

)
. (2.7)

This outer product is called a density matrix description of the state.
It is obvious from the form of equation 2.7 that the density matrix describing a qubit is Her-

mitian, and has trace one; these are in fact general properties which apply to all density matrices.
A two by two matrix can always be expanded as a weighted sum of four basic matrices (a matrix
basis), and the most useful basis is provided by the Pauli matrices

σ0 =

(
1 0
0 1

)
σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
(2.8)

where the usual set of three Pauli matrices has been extended to include the identity matrix σ0.
As the Pauli matrices are Hermitian, a density matrix can be written as

|ψ〉〈ψ| = 1
2
(σ0 + sxσx + syσy + szσz) (2.9)

where sx, sy and sz are three real coefficients. This might seem excessive, as we know that any
pure state can be described using only two numbers (θ and φ), but it is easily shown that sx, sy

and sz are related; in effect they are the three components of a vector of unit length. Indeed it can
be shown that this vector is identical to the Bloch vector, discussed above.

The importance of density matrices can be motivated by considering the concept of fidelity,
which describes how similar two different states are5. For assessing fidelity it seems obvious that
the measure should be built around the inner product. Since the two basis states are orthonormal,
we know that

〈0|0〉 = 〈1|1〉 = 1 〈0|1〉 = 〈1|0〉 = 0 (2.10)

which makes sense as the two basis states are exactly like themselves, and as different as possible
from one another. However the inner product of two general states will be a complex number, while
fidelity should be a real number between 0 and 1. A better definition of the fidelity of one ket |φ〉
with respect to another ket |ψ〉 is6

F (|φ〉, |ψ〉) = |〈φ|ψ〉|2 = 〈φ|ψ〉〈ψ|φ〉 (2.11)

which is just the expectation value of the projector |ψ〉〈ψ| for the state |φ〉.
Qubits can also be found in mixed states, where the state of the qubit is not exactly known, but

can only be described probabilistically. Suppose, for example, that a qubit is known to be in some
state |ψn〉 with probability pn, but it is not known which state the qubit is actually in. In this case
the fidelity between |φ〉 and this mixed state is given by a weighted average

F =
∑

n

pn〈φ|ψn〉〈ψn|φ〉 = 〈φ|
(∑

n

pn|ψn〉〈ψn|
)
|φ〉 (2.12)

5This will be explored in more detail in chapter 6, once we have considered non-unitary operations.
6Some authors, notably [Nielsen 2000], use the square root of this definition. Clearly these two definitions are

very closely related.
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where the second form follows simply by linearity. Hence we can describe mixed states directly
using weighted sums of pure states of the form

ρ =
∑

n

pn|ψn〉〈ψn| (2.13)

where as mentioned before pn ≥ 0 is the contribution of the pure state |ψn〉〈ψn| to the mixture (the
probability of the pure state occurring in the mixture).

Clearly such mixed states are Hermitian, and as the probabilities of the various contributions
must sum to one (

∑
n pn = 1) the density matrix must have trace one. Mixed states can, however,

be distinguished from pure states by evaluating their purity, defined as the trace of ρ2. It can be
shown that any mixed state of a single qubit corresponds to a point inside the Bloch Sphere.

It is useful to be able to calculate the evolution of states described using a density matrix
rather than a ket vector. This problem can be addressed directly by solving the Liouville–von
Neumann equation (the density matrix equivalent of the time dependent Schrödinger equation),
but it is simpler to proceed by analogy. The evolution of a bra vector is clearly closely related to
the evolution of the corresponding ket vector,

(U |ψ〉)† = 〈ψ|U † (2.14)

so that the density matrix description of a pure state evolves according to

|ψ〉〈ψ| Ht−→ U |ψ〉〈ψ|U † (2.15)

and the linearity of the operations guarantees that a mixed state will evolve in the same way.

2.3 Propagators and Pauli matrices

We have already noted that the Pauli matrices are Hermitian, and thus provide a natural basis
for describing the density matrix corresponding to a qubit. In the same way, the fact that any
Hamiltonian is Hermitian means that any Hamiltonian applied to a single qubit can be written as
a weighted sum of the four Pauli matrices, equation (2.8), where the weights are real. This means
that the Pauli matrices provide a natural language for describing single qubit interactions as well
as single qubit states.

The fact that any propagator describing the evolution of a quantum system is unitary has several
significant consequences. Firstly it means that every propagator has an inverse, and so quantum
evolution is reversible. (One exception to this general principle is measurement, which is discussed
in more detail below). Secondly unitary transformations are length preserving and can in general
be thought of as rotations of the vector describing the quantum state. Thirdly we note that the
Pauli matrices are unitary, and so correspond to possible propagators. As we shall see later the
Pauli matrices viewed as propagators correspond to important quantum logic gates7.

The fact that the Pauli matrices are both unitary and Hermitian has the interesting consequence
that

σ2
α = σ0 (2.16)

7Suspicious minds might surmise that using the Pauli matrices to describe quantum states, Hamiltonians, prop-
agators, and logic gates will inevitably lead to confusion, but in practice such problems rarely occur.
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where σα are the usual Pauli matrices, with α equal to x, y, or z. This observation can be used to
show that

exp(−iθ σα) = cos(θ)σ0 − i sin(θ)σα (2.17)

without diagonalizing any matrices, making it easy to calculate many single qubit propagators.
Finally we note that the propagator corresponding to a Hamiltonian which is some multiple of

σ0 is simply a global phase shift, which has no physical significance. In essence this occurs because
adding multiples of σ0 corresponds to moving the zero-point of the energy scale, which has no
physical significance.

2.4 Quantum logic gates

The basic idea of quantum information processing is that information is stored in quantum bits
and processed by quantum logic gates. Just as classical logic gates take classical bits from one state
to another, so quantum logic gates take qubits from one state to another. This can be achieved
by modifying the system’s Hamiltonian, by applying additional control fields to the background
Hamiltonian which underlies the system.

Applying Hamiltonians will cause qubits to evolve under unitary transformations, which are
reversible. With classical bits there are only two reversible gates which act on a single bit: the
not gate, which takes a bit in state 0 into state 1 and vice versa, and the identity gate, which
just leaves the bit unchanged8. There are also two irreversible gates, set which sets a bit to 1
whatever its initial state, and clear which sets a bit to 0. Clearly these two cannot be achieved
with unitary transformations, and so we will neglect them for the moment.

Returning to the two unitary gates, we must first find propagators that implement them. Clearly
σ0 will perform identity as

(
1 0
0 1

)(
1
0

)
=

(
1
0

)
and

(
1 0
0 1

)(
0
1

)
=

(
0
1

)
(2.18)

while σx corresponds to not as

(
0 1
1 0

)(
1
0

)
=

(
0
1

)
and

(
0 1
1 0

) (
0
1

)
=

(
1
0

)
. (2.19)

We now have to find Hamiltonians which can give rise to these propagators. Clearly σ0 can be
achieved simply by doing nothing at all9, but σx is slightly more difficult. For the moment it suffices
to note that

exp(−iπσx/2) = −iσx (2.20)

(the reason for dividing the σx by 2 will soon become clear), and so a not gate can be achieved by

8It may seem excessive to consider trivial gates such as identity, but the formalism works better if they are
included.

9In fact the identity gate is slightly more subtle than it might seem, as the state of the qubit will evolve under
the background Hamiltonian even when no additional control fields are applied. This point will be addressed later.
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evolving the qubit under a Hamiltonian proportional to σx for an appropriate time10. Note that
the factor of −i is just a global phase, and so can be ignored11.

The quantum not gate behaves exactly like a classical not gate when applied to basis states,
but it can also be applied to more general states12:

(
0 1
1 0

)(
α
β

)
=

(
β
α

)
. (2.21)

The effect of this gate can be better understood by considering its effect on the Bloch sphere.
Rewriting the general state in polar coordinates as before,

(
0 1
1 0

)(
cos(θ/2)

eiφ sin(θ/2)

)
=

(
eiφ sin(θ/2)
cos(θ/2)

)
(2.22)

= eiφ

(
sin(θ/2)

e−iφ cos(θ/2)

)
(2.23)

= eiφ

(
cos([π − θ]/2)

e−iφ sin([π − θ]/2)

)
(2.24)

shows that (neglecting the irrelevant global phase) the effect of a not gate is to negate both the
latitude and longitude coordinates. A little thought shows that this is equivalent to rotating the
Bloch sphere by 180◦ around the x axis. The significance of equation (2.20) should now be clear:
the effect of applying some Hamiltonian to a qubit is to rotate the Bloch sphere around an axis
parallel to the Hamiltonian. The angle of rotation depends on both the intrinsic strength of the
Hamiltonian, and the time for which it is applied.

Thinking of the not gate as a 180◦ rotation also makes sense when considering the effect of
applying two not gates in sequence. Clearly this should have no overall effect, and it is comforting
to note that two successive 180◦ rotations is equivalent to a 360◦ rotation, which leaves the Bloch
sphere unchanged13. Reversing this approach we can also think about rotations through smaller
angles, such as a 90◦ rotation around the x axis. This has the propagator

exp[−i π/2 σx/2] =
1√
2

(
1 −i
−i 1

)
(2.25)

which acts to convert basis states into superpositions. Applying this propagator twice gives a
not gate, and so it is called the square-root-of-not gate. Clearly this gate has no classical
equivalent: it is a purely quantum logic gate.

10Once again the situation is subtler than it might seem: the obvious approach is just to apply a control field which
generates a Hamiltonian proportional to σx, but this is not quite right as the background Hamiltonian will also still
be present. The brute force solution is just to make the control field very large in comparison with the background
Hamiltonian, but this is rarely practical. A better approach is to apply a weak control field which oscillates at a
resonance frequency of the system. This point will be explored later.

11This apparently innocuous statement in fact involves a number of subtle and dangerous points. Global phases
can (and should) be ignored, but it is vital to be sure that they are indeed genuinely global. This point should
become clearer once two qubit gates have been considered.

12This ability to perform information processing on superposition states lies at the root of the power of quantum
computers.

13In fact careful thought shows that a 360◦ rotation does not leave a state completely unchanged, but applies a
phase factor of −1; this is an example of spinor behaviour. If the phase shift is a global phase then it can be ignored,
but in some cases spinor behaviour can be used to generate useful local phase shifts.
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This is not the only purely quantum logic gate: there are an infinite number of such gates!
In general any rotation of the Bloch sphere (that is, a rotation by any angle around any axis)
can be considered as a quantum logic gate, and can be implemented by applying an appropriate
Hamiltonian for an appropriate time. For the moment we will briefly consider two of the more
important gates: the Hadamard gate and the phase gate.

The Hadamard gate, usually indicated by the letter H, is similar to the square-root-of-not
gate, but with subtly different effects. It is described by the propagator

H =
1√
2

(
1 1
1 −1

)
(2.26)

and so acts on the basis states to give

|0〉 −→ 1√
2

(|0〉+ |1〉) = |+〉 and |1〉 −→ 1√
2

(|0〉 − |1〉) = |−〉. (2.27)

Unlike the square-root-of-not gate the Hadamard gate is self-inverse, so that applying it twice
is equivalent to doing nothing. This means that the Hadamard gate must correspond to a 180◦

rotation, and it is in fact equivalent14 to a 180◦ rotation around an axis tilted at 45◦ degrees from
the x axis towards the z axis.

The phase gate is usually indicated by the letter S, and can be thought of as the square-root-
of-σz gate. It is described by the propagator

S =

(
1 0
0 i

)
(2.28)

and its effect is simply to change the phase of |1〉 by 90◦, while leaving |0〉 unaffected, or, equivalently,
to rotate the Bloch sphere by 90◦ around the z axis. Note that the classical states 0 and 1, which
lie at the north and south poles of the Bloch sphere, are not affected by this rotation, but the phase
of a superposition will be changed.

2.5 Gate notation

It is possible to describe quantum gates in many different ways, and this has given rise to a range
of notations for discussing them. For example the not gate can also be written as X, as σx, or
as 180x. The decision between these forms is usually a matter of context and the background of
the person discussing the gate! Researchers with a background in computer science would tend to
use the most abstract notation, X, while physicists studying quantum information theory would
normally choose the Pauli matrix form, σx. By contrast, experimental physicists who are interested
in actually building quantum computers would usually use the description 180x, as this corresponds
most closely to a physical process. It is usually a good idea to keep an open mind, and be ready to
use whatever notation is around. A list of important gates can be found in Appendix A.

There is, however, one important distinction between the theoretician’s X and σx, on the one
hand, and 180x on the other, and this is the matter of global phases. It is clear from equation 2.20
that 180x is not exactly the same as σx, but differs by a global factor of −i. In the single qubit case
this global phase is completely irrelevant, but in systems of two or more qubits it can be necessary
to be much more careful.

14Up to a global phase.
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2.6 Quantum networks

Just as a single bit is not much use on its own, very little can be achieved with a single logic gate.
Effective information processing requires that gates be joined together to form networks, and the
same approach can be used with quantum logic gates. Clearly quantum networks will only be really
useful when applied to systems with more than one qubit15, but even with a single isolated qubit
the idea has some use. Gate networks can be used both to explain some classic experiments, such
as Ramsey fringes and spin echoes, and also to build single qubit gates out of other gates.

As an example of the second kind, consider the network HSSH, which corresponds to applying
first a Hadamard gate, then a phase gate, then another phase gate, and finally a Hadamard gate.
The effect of this can be deduced by applying the gates in sequence to a qubit in a general state,
but it is sometimes more useful to consider the network directly, by simply multiplying out the
constituent propagators

1√
2

(
1 1
1 −1

)(
1 0
0 i

)(
1 0
0 i

)
1√
2

(
1 1
1 −1

)
=

(
0 1
1 0

)
(2.29)

to find that this network is equivalent to a not gate. Since SS = σz this network can also be
written as HσzH = σx, or even more simply as HZH = X. Some standard networks are listed in
Appendix A.

The network notation does give rise to one serious ambiguity of notation which we have
sidestepped above. When describing a process by a sequence of operators, the operators are ap-
plied from right to left, so that the first operator applied is the rightmost operator written in the
sequence. By contrast, networks are usually written running from left to right, so that the first
operator applied is the leftmost operator written in the network. In some cases, therefore, it can
be unclear whether to apply the gates from right to left or left to right! In the networks above, of
course, this distinction is irrelevant as the networks are symmetric, but in general this ambiguity
can be a problem.

An important example of building quantum logic gates out of networks is provided by the
Hadamard gate. There are many different ways of implementing this, but the most useful approach
is to relate the Hadamard to a 90◦ rotation. We have already considered a 90◦x rotation, and a 90◦y
rotation can be described in much the same way:

90◦x =
1√
2

(
1 −i
−i 1

)
90◦y =

1√
2

(
1 −1
1 1

)
. (2.30)

From the form of the 90◦y operator it is obvious that it is closely related to a Hadamard, and
calculations show that the Hadamard is equivalent to a 180◦z operation followed by a 90◦y operation,
or to a 90◦−y followed by a 180◦z.

Spin echoes occur when a 180◦ rotation is placed half way through a period of evolution under
a background Hamiltonian of the form ω σz/2, and rely on the identity φz 180x φz ≡ 180x. By
this means evolution under the background Hamiltonian can be canceled, making the final state
independent of the value of ω. Spin echoes are best known in the context of Nuclear Magnetic
Resonance (NMR), but are a universal quantum phenomenon.

15It can be shown that, just as a classical logic network can be built using only one and two bit gates (and, or
and not), any quantum logic network can be built out of one qubit and two qubit quantum logic gates.

20



2.7 Initialization and measurement

So far we have only considered unitary gates (gates that can be described by unitary matrices),
but some important gates are obviously not unitary. For example consider the clear gate, which
sets a qubit to the state |0〉 whatever its initial state is; clearly this process cannot be described
by matrix multiplication. This might seem problematic, as evolution of a quantum system under a
Hamiltonian is always unitary, and it is not clear how a quantum system can evolve other than in
response to a Hamiltonian.

The solution to this quandary is that while a single isolated qubit can only undergo unitary
evolution, there isn’t really any such thing as an isolated qubit. The fact that we can use control
fields to alter the state of the qubit means that the qubit must have some interaction with the rest
of the world. It can be shown that non-unitary evolutions of a qubit can be achieved by performing
a unitary evolution on a composite system, comprising the qubit and some environment, and
then ignoring the state of the environment. A detailed analysis of this process clearly requires an
understanding of two qubit systems, and so is beyond the scope of this chapter; as usual it suffices
to note that non-unitary operations can be performed.

Another important non-unitary gate is the readout gate, which simply performs a classical
measurement of the state of a single qubit. A full discussion of what measuring the state of
a quantum system really means would be very complicated, and we don’t yet have a complete
understanding, but fortunately it is easy to give an accurate mathematical description of what the
measurement process does to the quantum state. As usual we start by considering a single qubit
in a general state

|ψ〉〈ψ| =
(

α
β

) (
α∗ β∗

)
=

(
αα∗ αβ∗

βα∗ ββ∗

)
(2.31)

and then consider the state of the qubit after the measurement. Assuming we measure in the
computational basis16 we know that the result of the measurement will be either that the qubit
is in state |0〉, or that it is in state |1〉, and that after the measurement the qubit will be found
in the appropriate state. We also know that the probability of getting the result |0〉 is given by
|α|2 = αα∗, and the probability of getting the result |1〉 is given by |β|2 = ββ∗.

We could choose to stop the discussion here, but it would be useful to be able to describe the
state of the system after the measurement in the language we have used before. We don’t know
what the state of the system is after the measurement, because we don’t know what the result of
the measurement! We can, however, make probabilistic statements about it, and this is the way
to proceed. Clearly the final state is a mixed state, with the form of equation (2.13), and can be

16We can of course choose to measure the qubit using some other basis, but this would simply make the process
appear more complicated without changing any fundamentals. Furthermore a measurement of a single qubit in
any basis can always be achieved by using a measurement in the computational basis preceded and followed by
appropriate unitary transformations.

21



written as

ρ = αα∗|0〉〈0|+ ββ∗|1〉〈1| (2.32)

= αα∗
(

1 0
0 0

)
+ ββ∗

(
0 0
0 1

)
(2.33)

=

(
αα∗ 0
0 ββ∗

)
(2.34)

showing that from a mathematical point of view the effect of a measurement is simply to zero the
off-diagonal elements of the density matrix.

The dephasing process is sometimes called decoherence as the elements of the density matrix
which are lost are those which correspond to the system being in a coherent superposition state.
Decoherence is almost always the enemy of quantum information processing, and vast effort is
put into controlling it. The topic is, however, terribly complicated and here we simply note that
the random interactions between a quantum system and its environment have the same form as
measurements. Thus decoherence results from the environment measuring the state of the system,
and so the system must be well insulated from the surroundings if it is to exhibit interesting
quantum behavior.
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Chapter 3

Atom in a Laser Field

In this chapter we will use a succession of different methods1 to calculate the interaction between an
atom and the light field from a laser. We will see that the effect of the light is to cause transitions
between different energy levels in the atom, but that these transitions only occur if the frequency
of the light is tuned to match the energy gap between the levels

hν = ~ω = Ef − Ei (3.1)

so that the light is resonant with the transitions.
Atoms have an infinite number of energy levels, and might seem to be rather complex systems,

but the resonance condition means that our treatment of them can be greatly simplified. In most
cases it will be sufficient to consider a two level atom, which is assumed to have a ground state
|g〉 and a single excited state |e〉, and a laser field which is close to resonance with this transition.
Other transitions are far from resonance and so can be ignored.

3.1 Time-dependent systems

Consider a quantum mechanical system with a HamiltonianH0, which is subjected to a time-varying
perturbation2 H1(t). The total Hamiltonian of the system is then

H = H0 +H1(t). (3.2)

As usual the eigenstates of H0 form a complete set, and so we can write the wavefunction of the
system in this basis,

|ψ(t)〉 =
∑

j

cj(t)|j〉 (3.3)

with the time dependence of |ψ(t)〉 arising from the time dependence of the coefficients. If there
was no perturbation present then these coefficients would still oscillate at their natural frequencies,

cj(t) = cj(0)e−iEjt/~, (3.4)

1All the methods used in this chapter are semi-classical treatments, in which we treat the light field as a classical
system; a brief introduction to fully quantum approaches can be found in Appendix B.

2The treatment here is closely based on that given by Prof. Steane in his A3 lectures notes “Further Quantum
Physics,” which is itself largely taken from [Shankar 1994].
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and so it is useful to separate the time variation into that which would occur without the pertur-
bation, and any additional variation which can be ascribed to the perturbation. Thus we write

|ψ(t)〉 =
∑

j

dj(t)e
−iEjt/~|j〉 (3.5)

with all the interesting behavior now found in the values of dj(t). Now we know from the time-
dependent Schrödinger equation that [i~ ∂/∂t − H0 − H1(t)] = 0, and applying this operator to
both sides of equation 3.5 gives

0 =
∑

j

(
i~ ḋj(t) + dj Ej − dj H0 − dj H1(t)

)
e−iEjt/~|j〉 (3.6)

or, since H0|j〉 = Ej|j〉,
∑

j

i~ ḋj(t)e
−iEjt/~|j〉 =

∑
j

dj e−iEjt/~H1(t)|j〉. (3.7)

We can pick out the time-dependence of one of the coefficients, say dk, by taking the inner product
of 〈k| with equation 3.7 giving

i~ ḋke
−iEkt/~ =

∑
j

dje
−iEjt/~〈k|H1(t)|j〉 (3.8)

which can be written as
ḋk = −i

∑
j

dje
iωkjtH1

kj(t)/~ (3.9)

where ωkj = (Ek−Ej)/~ and H1
kj(t) = 〈k|H1(t)|j〉 is called a matrix element of H1. Note that this

equation is exact, and is really just the time-dependent Schrödinger equation in disguise.

3.2 Sudden jumps

As a first attempt at solving this equation, consider a really simple (indeed stupidly simple) model
system3, namely a two level atom with a single electron which experiences an electric field E for a
time τ . The perturbation Hamiltonian is then

H1 = −µ ·E =

{
ezE 0 ≤ t ≤ τ

0 otherwise
(3.10)

where µ = −er is the dipole moment of the atom arising from the separation of the electron and
the nucleus, and the electric field direction has been taken as defining the z-axis. From symmetry
grounds it is obvious that

〈g|H1|g〉 = 〈e|H1|e〉 = 0 (3.11)

3As we shall see below, the two level atom model is wildly inappropriate in this case; however some of the ideas
we come across here will carry over into more realistic systems. The treatment here largely follows that in Chapter
6 of [Atkins 1997].
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and we can choose to write
〈g|H1|e〉 = ~V 〈e|H1|g〉 = ~V ∗ (3.12)

where the second result is deduced from the first by the fact that the Hamiltonian is Hermitian,
although for the moment V can be taken as real so that V ∗ = V . Thus the time dependence of the
coefficients is given by

ḋe = −i dg eiω0tV (3.13)

ḋg = −i de e−iω0tV (3.14)

where ω0 = ωeg = −ωge corresponds to the energy gap between the ground and excited states.
These coupled differential equations can be solved by differentiating one equation with respect to
time and substituting the other equation into the result, to give a single second order ordinary
differential equation. The procedure is fairly straightforward but messy4. It is useful to start by
considering the simplest case where the field is very strong, or the two energy levels are almost
degenerate, so that V À ω0 and the exponential terms can simply be ignored. The equations are
now easy to solve; assuming the atom starts in the ground state (so that dg = 1 and de = 0) the
result is

dg = cos(V t), de = −i sin(V t). (3.15)

The effect of the sudden strong perturbation is to cause the system to make transitions from the
ground state to the excited state and back again: the amplitude of the excited state is modulated
sinusoidally at a rate given by V . The exact result has the same broad form: assuming that the
atom starts in the ground state then

de = −i

√
4V 2

4V 2 + ω2
0

sin

(
t
√

4V 2 + ω2
0

2

)
eiω0t/2 (3.16)

which reduces to equation 3.15 when ω0 → 0.
This sinusoidal modulation is called Rabi flopping and is also found in more realistic treatments

of transitions. Note that flopping will only occur at all if the perturbation connects the two
transitions, that is

V = 〈e|H1|g〉/~ 6= 0, (3.17)

and is only efficient if V > ω0, where ~ω0 corresponds to the gap between the energy levels. Thus a
static field can be very effective at inducing transitions between degenerate energy levels, but will
have little effect on non-degenerate levels unless it is very strong. In this latter case the field will
cause transitions between many different pairs of levels5, and the two level atom assumption will
not be valid. Fortunately there are more subtle ways of inducing transitions.

3.3 Oscillating fields

A much more practical approach is to note that transitions can be induced by a small oscillating
field, as long as the field is close to resonance with the desired transition. In many texts this

4The gory details are in [Atkins 1997].
5Indeed a sufficiently strong field will cause transitions to unbound states, effectively tearing the atom apart!
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result is derived using time-dependent perturbation theory, but it is more insightful to begin with
an analytic result. Consider a cosinusoidal oscillating electric field, with an angular frequency
ω = 2πν and intensity E ; this can be rewritten as the sum of two complex fields

E(t) = E cos ωt = 1
2
E (

eiωt + e−iωt
)

(3.18)

and for the moment we will only consider the first term in this sum and will ignore the counter-
rotating component; justifications of this approach, which is called the rotating wave approximation
will be given below. The matrix elements of the perturbation Hamiltonian are now given by

〈g|H1|e〉 = 1
2
~V eiωt (3.19)

〈e|H1|g〉 =
(

1
2
~V eiωt

)∗
= 1

2
~V e−iωt. (3.20)

Inserting these into equation 3.9 gives for the time-dependence of the coefficients

ḋe = −1
2
i dg ei(ω0−ω)tV (3.21)

ḋg = −1
2
i de e−i(ω0−ω)tV (3.22)

which are exactly our previous results, except that ω0 has now been replaced by ω0−ω, that is the
difference between the frequency of the light and the resonance frequency of the system, and the
strength of the perturbation has been halved6. In particular if the light is exactly resonant with
the transition, so that ω0 − ω = 0, then the simple results

dg = cos(V t/2), de = −i sin(V t/2) (3.23)

are recovered. Thus Rabi flopping can be induced by a weak field oscillating in resonance with a
transition. The populations of the ground and excited states are given by

Pg = cos2(V t/2) = 1
2
[1 + cos(V t)] (3.24)

Pe = sin2(V t/2) = 1
2
[1− cos(V t)] (3.25)

and are sinusoidally modulated at a frequency V t, called the Rabi frequency. Note that the Rabi
frequency refers to the rate of modulation of the populations, not the probability amplitudes, which
are modulated at half this frequency7.

This method can, of course, also be used to calculate the effects of off-resonance excitation,
and the key results are implied above. However more insight into this problem can be gained by
using the rotating frame transformation and the vector model, which will be discussed in the next
chapter. Although the discussion there is formally concerned with spins in magnetic fields, the
results can, of course, be applied to any other two level quantum system.

6There is considerable variation among (and even within) textbooks as to whether V is taken as the strength of
the oscillating field (as used here), or as the strength of the rotating field; this leads to minor variations in equations,
and in particular in the formula for the Rabi frequency. Similarly some authors incorporate a factor of ~ into V
rather than separating it out as done here.

7This can be seen as an example of spinor behavior: when a spin is coherently rotated from its ground state
through an excited state and back to the ground state again its wavefunction picks up a sign of −1.
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3.4 Time-dependent perturbation theory

Two approximations were made in deriving the previous result: firstly that we can treat the system
as a two level atom, and secondly that the counter-rotating component can be ignored. This seems
reasonable in the light of the final result: as the counter-rotating component is far from resonance
it will not be effective at inducing Rabi flopping unless the field is very strong. Furthermore, since
the light will only induce transitions at frequencies close to ω it seems reasonable to ignore all other
excited states. It might, however, be argued that this proof is circular, since the final result is
assumed at the start!

To make a more rigorous argument it is necessary to return to equation 3.9, which is exact. We
could solve this fairly easily for a two level atom, but with an n level system we will end up having to
solve an nth order differential equation. Furthermore, this equation will become extremely complex
unless the form of the time-varying perturbation is extremely simple. To make further progress we
will have to make approximations from the start, and if the perturbation is small then it makes
sense to use a power series in H1(t).

Consider a multi-level atom, and suppose that the system begins in some initial state |i〉 and we
wish to obtain the amplitude of the system making a transition to some final state |f〉. The zero
order result is obtained by ignoring the perturbation completely (effectively setting H1 = 0), and
substituting this into equation 3.9 gives the trivial result that the coefficients do not evolve. The
first order result is then obtained by using the zeroth order wavefunction (that is, the unperturbed
coefficients) with the first order Hamiltonian, giving

ḋf = −ieiωfit〈f |H1(t)|i〉/~. (3.26)

(Note that at small times after the perturbation is first applied all the coefficients will be close to
zero, except for di which will remain close to one). The solution is

df (t) = − i

~

∫ t

0

eiωfit
′〈f |H1(t′)|i〉 dt′. (3.27)

where t′ is just a dummy variable for the integration and we have assumed that 〈i|H1|i〉 = 0 as
before.

This integral is, of course, a Fourier transform, suggesting that the process will be sensitive to
components ofH1(t) oscillating near the frequency ωfi. Furthermore, because the Fourier transform
is linear the total effect of applying several different perturbations is simply the sum of the effect
of the individual perturbations. In particular it is possible to treat an oscillating perturbation
as the sum of two counter-rotating perturbations, equation 3.18, and it is possible to treat any
perturbation as a sum of oscillating terms. For a single oscillating term with angular frequency ω
the solution is

df (t) = − i

~

∫ t

0

ei(ωfi−ω)t′~V (ω) dt′ = −iV (ω)×
[

ei(ωfi−ω)t′

i(ωfi − ω)

]t

0

(3.28)

= −iV (ω)ei(ωfi−ω)t/2t sinc[(ωfi − ω)t/2] (3.29)

where sinc(x) = sin(x)/x. The sinc function arises naturally whenever a Fourier transform is taken
of an oscillation with a finite extent, and can be considered as measuring the uncertainty in the
frequency of the oscillation.
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First, consider the case when the oscillation is exactly resonant with the transition, so that
ωfi − ω = 0. Since sinc(0) = 1 equation 3.29 reduces to

df (t) = −iV t. (3.30)

For short times
sin(V t) ≈ (V t) (3.31)

and this result is identical to the previous result for a two level atom, equation 3.15. At longer times
the treatment breaks down, as it is no longer reasonable to assume that di is always one. This can
be overcome by using higher orders of perturbation theory: the conceptually simplest method is
to feed the first order wavefunctions back into the algorithm to obtain second order wavefunctions,
and so on, giving series expansions of the underlying sine and cosine modulations.

Equation 3.29 can also be used to look at the effects of excitation away from resonance. This
will be identical to excitation on-resonance, except that the strength of the interaction is scaled
down by sinc[(ωfi − ω)t/2]. Clearly the effect will be very small unless ω is close to resonance,
justifying our previous decision to use the two-level atom model and to ignore the counter-rotating
component of the excitation field. More interestingly, this result shows that excitation becomes
more “choosy” as time goes on; this is not particularly surprising, however, as it simply reflects the
fact that the frequency of an oscillation becomes better defined as it is observed over a long period.

3.5 Fermi’s Golden Rule

The treatment above looks good, but unfortunately clashes with both common sense and common
experience. The first clash shouldn’t worry you at all (quantum mechanical systems are famous for
their strange behavior!), but the second clash is more worrying.

Consider the effect of on-resonance excitation, equation 3.30, and calculate how the population
of the final state varies with time. Since Pf = |df |2 this is given by

Pf (t) = V 2t2 (3.32)

so the degree of excitation varies quadratically with time, or, equivalently, the rate at which tran-
sitions occur increases linearly with time. In fact, however, the excited state population is often
observed to grow linearly with time, so that the transition rate is constant. Fortunately this ap-
parent discrepancy is easily explained. So far we have assumed that the energy levels of an atom
are perfectly sharp, so that any transition has a single exact frequency, but this is quite untrue.
Every excited state of an atom has a finite lifetime (limited by the spontaneous emission lifetime),
and so has a corresponding uncertainty in its energy; thus the frequency of a transition is not in
fact well defined! It is, therefore, usually necessary to integrate the transition probability over the
whole range of transition frequencies, and when this is done8 it is found that

Pf (t) ∝ V 2t (3.33)

in agreement with naive expectations.

8For the detailed derivation see any standard text.
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3.6 Rabi or Fermi?

Who then is right? Does light cause an atom to undergo Rabi flopping, or does excitation follow
Fermi’s Golden Rule? This question can be considered from the point of view of theory and from
that of experiment.

The essential reason underlying the linear behavior in equation 3.33 is easy to understand. As
previously noted, the system becomes increasingly choosy about whether or not to make a transition
as time goes on, and the increasing fussiness counteracts the intrinsic tendency of the transition
rate to grow, resulting in a constant transition rate overall. This effect is only important, however,
for times which are long in comparison with the inverse of the width of the transition; in effect
this means times which are long in comparison with the lifetime of the excited state. The time for
which the light is applied will obviously depend on the time it takes to have a significant effect,
which is conveniently parameterized by the oscillation frequency in equation 3.15. We can thus
distinguish two extreme regimes of behavior, depending on V and the state lifetime τ :

1. Strongly driven transitions: V τ À 1
In this case the system undergoes Rabi oscillations between the ground and excited state. This
case is sometimes called coherent control, and is suitable for quantum information processing
experiments.

2. Weakly driven transitions: V τ ¿ 1
In this case the system obeys Fermi’s Golden Rule and a constant transition probability is
observed. The long term behavior of the system is described by rate equations.

For transitions at optical frequencies, the lifetimes of the excited state are usually fairly short9, and
transitions are usually weakly driven, although it is possible to observe Rabi oscillation behavior,
either by using very high power lasers, or by artificially suppressing spontaneous decay10. Thus
direct optical transitions are not normally suitable candidates for coherent quantum control. The
obvious solution is to use transitions to a low lying quantum state, so that the transitions occur at
much lower frequencies. As we will see later, transitions between nuclear spin states, which occur
at frequencies below 1 Ghz, are easy to drive coherently. There are, however, two problems with
this approach.

Firstly, most transitions from the ground state to low lying excited states are forbidden, that
is the matrix element for the transition H1

eg = 0. Although working out the exact matrix element
connecting two states for a given perturbation is quite complicated, it is relatively simple to list
selection rules which determine whether it is zero (a forbidden transition) or non-zero (an allowed
transition). So far we have been considering transitions induced by the interaction between the
electric field of light and the electric dipole moment of an atom, and so it is more accurate to state
that most transitions from the ground state to low lying excited states are electric dipole forbidden.
It is, of course, possible to find many low frequency transitions between pairs of excited states
which are electric dipole allowed, but in this case both states will be broadened by spontaneous
emission, and the possibility of coherent control is further suppressed.

9From the Einstein A and B coefficients we know that the relative importance of spontaneous decay and driven
transitions goes as the third power of the frequency.

10This can be achieved by placing the atom is a high finesse optical cavity, so that the system can only emit
photons into the resonant modes of the cavity.
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A second problem is that low frequency light has a long wavelength, and this makes it difficult
to focus. For quantum information processing it is usually necessary to excite one atom without
exciting another similar atom which is physically close by. Such selective excitation can only be
achieved if the light can be focused down to a spot which is small compared with the separation
of the atoms, and this spot size is limited by the wavelength of the light. For visible light this
resolution limit will be around 1 µm, but for 1 GHz radiation the limiting separation will be around
1 m.

3.7 Raman transitions

The solution to both these problems is to use Raman transitions to connect two low lying energy
levels. Many textbooks do not discuss Raman transitions at all, and most of the rest only discuss
the Raman effect used in spectroscopy, rather than coherent Raman transitions. Fortunately the
basic idea is easy to understand.11

Consider a system with three energy levels, |g〉 and |e〉, which form the basis of our qubit, and
an additional level |a〉. We will assume that transitions between |g〉 and |e〉 are forbidden, but that
both of these can make transitions to |a〉. Suppose the system is illuminated by two lasers, one in
resonance with each of the two allowed transitions. The result of this process will be a complicated
evolution of the system between the three states, with transfers from |g〉 to |e〉 occurring via the
additional state |a〉. This (in principle) solves the problem of making forbidden transitions, but
is not an effective solution for two reasons. Firstly, the system cannot go from |g〉 to |e〉 without
passing through |a〉, and thus we no longer have a proper two level system, and secondly it remains
hard to drive the system strongly enough that coherent behavior occurs.

The solution is to tune both lasers away from the frequencies of the two allowed transition by
the same amount, so that the energy difference between photons in the two beams still matches the
energy gap between |g〉 and |e〉. The remarkable result is that although the two allowed transitions
no longer occur, Rabi flopping occurs for the forbidden transition between |g〉 and |e〉. This is an
example of a two photon process: in effect a photon is absorbed from one laser beam, while the
other beam stimulates the emission of a second photon. The transition is sometimes described as
occurring via a virtual state, but in fact occurs via off-resonance interactions with the (real) state
|a〉. Because these transitions are off-resonance the Rabi frequency is scaled down from its naive
value Ω by a factor Ω/∆, where ∆ is the frequency offset from resonance, but this is not a major
problem. An important advantage is that the system can be driven strongly, as the relevant state
lifetimes (τ , see the previous section) are those of |g〉 and |e〉; the lifetime of the additional state |a〉
is irrelevant12 as this state is never populated! Raman transitions provide an almost ideal solution
to the problem of inducing Rabi transitions between atomic energy levels, and very commonly
used13.

11For a slightly more detailed treatment see the notes by Dieter Jaksch.
12This is only true in an ideal world; in real life there is always some population of the additional state and its

lifetime cannot be completely ignored.
13The most popular alternative so far in experimental implementations of quantum information processing has

been to use so called quadrupole transitions, which are electric dipole forbidden but can be induced by strong laser
fields. More recently some researchers have considered using very intense lasers to perform direct Rabi flopping on
electric dipole transitions.
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Chapter 4

Spins in magnetic fields

Spins in magnetic fields provide one of the simplest and most natural physical systems for imple-
menting quantum bits; indeed the relationship between a spin and a qubit is so close that the terms
are sometimes used interchangeably. Experimental spin physics is rarely studied in physics courses
in the UK, which is a pity, as it provides one of the simplest examples of coherent quantum control
available. The treatment is essentially identical to that of two level atoms in laser fields, except
that transitions can almost always be treated as strongly driven. For details see [Goldman 1988].

4.1 The nuclear spin Hamiltonian

Just like electrons, atomic nuclei possess an intrinsic angular momentum, called spin1. This arises
from the coupling between the intrinsic spins of the protons and neutrons making up the nucleus. A
nucleus with spin quantum number I has spin angular momentum ~I and an associated magnetic
moment µ, given by

µ = γ~I (4.1)

where γ is called the gyromagnetic ratio of the nucleus, and is in some sense analogous to the
Landé g-value of an electron in an atom. Although it is possible to calculate these properties from
first principles, for most purposes it is best to treat the details of nuclear spins as experimentally
measured quantities.

If the spin is placed in a magnetic field B then the interaction between the magnetic moment
and the field is described by the Zeeman Hamiltonian

H = −µ ·B (4.2)

and the standard convention is to orient the z-axis along the magnetic field, so that

H = −µzB = −~γBIz = −~ωLIz (4.3)

where Iz is the projection of I onto the z-axis and ωL is called the Larmor frequency. As this is
a quantum mechanical system, Iz cannot taken any value, but can only take values between −I
and I in integer steps; the simplest situation is when I = 1

2
(a spin-1

2
nucleus), in which case there

1It is also possible to use electron spins as qubits; the basic techniques are very similar, but electron transitions
usually occur at higher frequencies than nuclear transitions, as electrons have a much larger magnetic moment
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are only two possible values, Iz = ±1
2
. The most important example of a spin-1

2
nucleus is the

hydrogen (1H) nucleus, but several others exist, most notably 13C, 15N, 19F and 31P.
The effect of a magnetic field on a spin-1

2
nucleus is to split apart the two spin states2, with

a splitting ~ωL, and these two energy levels provide an obvious implementation of a qubit. Note
that in this case the system really does have only two levels, and so we do not need to make a
two-level approximation. The transitions between these two spin state are electric dipole forbidden,
as they violate the electric dipole selection rule ∆S = 0, but they can be induced by magnetic
fields: the magnetic field matrix element 〈1|B|0〉 will be non-zero as long as the magnetic field is
not parallel to the z-axis. Thus if a strong magnetic field is suddenly applied at right angles to the
main magnetic field then transitions between the two spin states will occur. More realistically, the
same effect can be achieved by applying a weak oscillating magnetic field as long as it oscillates in
resonance with the transition, that is at the Larmor frequency.

4.2 The rotating frame

These transitions can be treated using exactly the same techniques as we used previously to study
transitions in a two level atom, but it is more common to use a subtly different (though ultimately
equivalent) approach, based on transforming the problem into a rotating frame. Consider a general
wavefunction |ψ〉, which we choose to write as

|ψ〉 = U |ψ̃〉 (4.4)

where U simply describes the transformation between two different bases which can be used to
describe the wavefunction Note that

|ψ̃〉 = U−1|ψ〉 = U †|ψ〉 (4.5)

where we have used the fact that basis-state transformations are unitary. If we transform the
wavefunction into a new basis then we must also transform the Hamiltonian, and this transformation
can be worked out using the time-dependent Schrödinger equation

i~
∂

∂t
|ψ〉 = H|ψ〉. (4.6)

In the transformed basis

i~
∂

∂t
|ψ̃〉 = i~

∂

∂t

(
U †|ψ〉) (4.7)

= i~
[
U † ∂

∂t
|ψ〉+

(
∂U †

∂t

)
|ψ〉

]
(4.8)

=

[
U †H + i~

(
∂U †

∂t

)]
|ψ〉. (4.9)

2There is enormous variation in the notation used to describe these two spin states in the literature. Two relatively
common notations are to call the spins states α and β, or to call them spin-up (↑) and spin-down (↓). As usual we
will avoid these arguments by calling the two states |0〉 and |1〉 or |g〉 and |e〉.
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Using equations 4.4 and 4.6 gives

i~
∂

∂t
|ψ̃〉 =

[
U †HU + i~

(
∂U †

∂t

)
U

]
|ψ̃〉 = H̃|ψ̃〉. (4.10)

and so the transformed Hamiltonian has the form

H̃ =

[
U †HU + i~

(
∂U †

∂t

)
U

]
. (4.11)

The first term in the transformed Hamiltonian is simply the obvious transformation of H into the
new basis, but the second term is more subtle. This term is zero for fixed transformations, and
corresponds to a fictitious energy, which is analogous to the fictitious forces which arise in classical
mechanics when working in accelerating frames.

To take a concrete example, we consider a spin-1
2

particle in a static magnetic field along the
z-axis and experiencing an oscillating magnetic field at right angles. This oscillating field can be
achieved by using the magnetic component of an appropriate oscillating electromagnetic field, that
is light at the resonance frequency3. Thus the Hamiltonian can be written in matrix form as

H =

( −1
2
~ω0 ~V cos ωt

~V cos ωt 1
2
~ω0

)
(4.12)

where we have used |g〉 and |e〉 as our basis states and have chosen to place the energy zero half
way between our two states. We then choose the transformation

U =

(
eiωt/2 0

0 e−iωt/2

)
(4.13)

which corresponds to using basis states which rotate in synchrony with one component of the
oscillating field. Applying equation 4.11 the Hamiltonian in this new frame is

H̃ =

(
1
2
~(ω − ω0) ~V cos(ωt)e−iωt

~V cos(ωt)eiωt −1
2
~(ω − ω0)

)
. (4.14)

Next we define the detuning as δ = ω − ω0 and separate the oscillating term into two counter-
rotating terms. Finally we apply the rotating wave approximation4 as before, and simply ignore
the rapidly varying terms. Thus to a good approximation

H̃ =

(
1
2
~δ 1

2
~V

1
2
~V −1

2
~δ

)
. (4.15)

It is important to remember that although this result has been derived for the case of a spin in a
magnetic field, the method is entirely general, and an identical result could have been derived for
an atom in a laser field: all two level quantum systems (qubits) are basically the same!

3As we shall see this turns out to correspond to radio-frequency (RF) radiation.
4The rotating wave approximation is not quite so good in this case as it was for transitions between atomic energy

levels as the frequencies involved are much lower. Careful calculations indicate that the counter-rotating component
gives rise to a small shift in the transition frequencies known as a Bloch–Siegert shift. This is an example of a more
general phenomenon called the AC Stark shift which is discussed in [Budker 2004].
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4.3 On-resonance excitation

As usual the simplest case occurs when the excitation is on-resonance, so that δ = 0 and the
Hamiltonian in the rotating frame is

H̃ =

(
0 1

2
~V

1
2
~V 0

)
(4.16)

which is clearly related to one of the Pauli matrices, that is

H̃ = 1
2
~V σx. (4.17)

We can calculate the evolution under this Hamiltonian by using the method of propagators, de-
scribed in section 1.10, to get

Ũ = exp(−iH̃t/~) = exp(−iθσx) (4.18)

where θ = V t/2. Now we have previously derived a formula for the matrix exponential of σx

(equation 2.17), and so know that

Ũ =

(
cos(V t/2) −i sin(V t/2)
−i sin(V t/2) cos(V t/2)

)
. (4.19)

If the system starts off in the ground state |g〉 then the state at later times is given by

ψ̃ = Ũ

(
1
0

)
=

(
cos(V t/2)
−i sin(V t/2)

)
(4.20)

in complete agreement with equation 3.23.
None of this should be surprising: it is all exactly as expected from the discussion in section 2.4

where we considered how to implement quantum logic gates, and showed that a not gate could be
implemented by applying a Hamiltonian proportional to σx for an appropriate time. A not gate
interconverts |0〉 and |1〉, which is exactly what occurs in Rabi flopping.

4.4 Excitation phases

We have seen that resonant radiation can be used to produce a Hamiltonian proportional to σx, but
in order to implement general single qubit gates it is useful to be able to implement Hamiltonians
proportional to σy. This can be achieved by simply altering the phase of the radiation, so that the
perturbation takes the form ~V cos(ωt + φ). The overall Hamiltonian can then be written as

H̃ =

(
0 1

2
~V [ei(ωt+φ) + e−i(ωt+φ)]e−iωt

1
2
~V [ei(ωt+φ) + e−i(ωt+φ)]eiωt 0

)
(4.21)

(where we have assumed the radiation is applied on-resonance) and making the rotating wave
approximation as usual gives

H̃ =

(
0 1

2
~V eiφ

1
2
~V e−iφ 0

)
= 1

2
~V (σx cos φ + σy sin φ). (4.22)

34



Thus by appropriate choice of φ we can generate Hamiltonians proportional to σx, or σy, or at any
angle between them. If we take the case φ = π/2, so that H̃ ∝ σy, then the evolution propagator is

Ũ =

(
cos(V t/2) − sin(V t/2)
sin(V t/2) cos(V t/2)

)
(4.23)

and the system undergoes Rabi oscillations at the same frequency as before. If only populations
are considered then the phase of the radiation has no effect, but if the amplitudes of the two states
are considered then the phase is important.

Sceptical readers might point out that the absolute phase of an oscillation is largely meaningless,
with only the relative phase of two oscillations being well defined. This is correct, and leads to
a corresponding result that it is not possible to define an absolute phase for a single Rabi pulse,
but it is possible to define a relative phase for two or more pulses. This will be explored in the
discussion of Ramsey fringes below.

4.5 Off-resonance excitation

Next we consider the case when the radiation is not quite in resonance with the transition frequency,
so that the Hamiltonian takes the general form, equation 4.15. The propagator is then

Ũ = exp

[
−i×

(
δ/2 V/2
V/2 −δ/2

)
× t

]
(4.24)

and brute force calculation5 gives the result

Ũ =

(
cos(Ωt/2)− i(δ/Ω) sin(Ωt/2) −i(V/Ω) sin(Ωt/2)

−i(V/Ω) sin(Ωt/2) cos(Ωt/2) + i(δ/Ω) sin(Ωt/2)

)
(4.25)

where Ω =
√

V 2 + δ2. Note that on-resonance δ = 0 and Ω = V , and our previous results are
recovered. Off-resonance, we see that the frequency of the Rabi oscillations is increased (Ω > V ),
but the efficiency is reduced (|0〉 cannot be completely converted to |1〉).

Seen from the conventional point of view, off-resonance excitation is a bad thing, but from the
viewpoint of quantum control it provides a direct route to other quantum logic gates. The most
important example occurs in the case when V = δ, so that Ω =

√
2V . Choosing t such that

Ωt/2 = π/2 gives

Ũ = −i×
(

1√
2

1√
2

1√
2

−1√
2

)
(4.26)

which (neglecting an irrelevant global phase) is the Hadamard gate, one of the most important single
qubit logic gates. However it is usually simpler in practice to consider only on-resonance excitation,
and to construct gates such as the Hadamard using gate networks as described in section 2.6.

5Essentially this requires finding the eigenvalues and eigenvectors as described previously; a symbolic mathematics
program such as Mathematica or Maple is a great help.
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4.6 Practicalities

I have already hinted that spins in magnetic fields are, in some sense, a more quantum mechanical
system than atoms in a laser field. The reason for this is not any fundamental property of the two
systems, but simply a matter of practicalities. The most important difference is that the transitions
between nuclear spin energy levels occur at very much lower frequencies.

It is obvious from section 4.1 that nuclear spin transition frequencies depend both on the
magnetic field strength used and on intrinsic properties of the nuclei. The largest static magnetic
fields available to us6 are around 20 T, and the most sensitive of the stable nuclei is 1H (hydrogen),
for which transitions frequencies in the range up to 1 GHz are found, corresponding to the radio-
frequency (RF) portion of the spectrum. Most studies of 1H take place at frequencies in the range
400–800 MHz, and studies of other nuclei (except for 19F and the dangerously radioactive nucleus
3H) take place at significantly lower frequencies.

There are two principal advantages of working with RF frequencies. The first is that spontaneous
emission rates at these low frequencies are completely negligible, and so it should be easy to reach
the coherent control region. The second advantage is that RF radiation is extremely easy to
generate and control. While experimentalists working with lasers have to work hard to control the
frequency, amplitude and phase of laser light, any desired RF pattern can be obtained simply by
asking a computer to generate it! For this reason coherent control of nuclear spins has flourished
for decades under the name of nuclear magnetic resonance or NMR.

There are, however, two major disadvantages of working with RF. The first is that the wave-
length of RF radiation is so large that spatially selective excitation is essentially impossible, as
discussed previously. The second is that the energy of RF photons is so small that it is virtually
impossible to detect single photons. Both of these problems have major consequences for the use
of NMR as an implementation of quantum information processing.

4.7 The vector model

There is another way of looking at spins in magnetic fields, usually called the vector model, which
was developed by Bloch.7 This is an entirely classical method for thinking about the situation, but
it turns out to give a pretty accurate description of a single isolated spin;8 by the obvious extension
it can also be used to describe any other single qubit system.

We have already seen that the state of a spin can be represented as a Bloch vector, pointing
from the origin to an appropriate point on the Bloch sphere. The vector model represents a spin
by a classical magnetic moment pointing along this vector. If the spin is placed in a magnetic field
along the z-axis then it will precess around the field, at the Larmor frequency, which depends on
the strength of the magnetic field and the size of the magnetic moment. This process corresponds
perfectly with the way in which the two basis states |0〉 and |1〉 pick up a relative phase shift at
the Larmor frequency.

6These fields are achieved using superconducting electromagnets, and are limited by the critical field and critical
current of the superconducting wires; larger fields are available for short periods of time by using pulsed electro-
magnets, and extremely large fields are available for very short times using destructive techniques.

7The vector model is very widely used in the field of NMR; see, for example, [Freeman 1998].
8This is a consequence of Ehrenfest’s theorem.
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The effect of resonant RF fields can be treated in much the same way. The oscillating magnetic
field component is divided into two counter-rotating components in the xy-plane, one of which
rotates around the field in the same direction and at the same rate as the spin. If we transform
into a rotating frame which also goes round in the same way then both the magnetization and the
RF field component will appear to be static in the xy-plane (the exact position depending on the
phase of the RF). The situation now looks just like a magnetic moment in a normal magnetic field,
and the spin will precess around the RF field component (which is along, say, the x-axis) at a rate
which depends on its strength. It is also clear why the counter-rotating component can be ignored:
this is moving so fast that the spin sees it as a rapidly fluctuating field which basically cancels out.

One might ask what has happened to the main magnetic field in this picture. The long answer
is that the rotating-frame transformation is an example of a gauge transformation, which results in
a gauge field, in this case a fictitious magnetic field which exactly cancels the main field. The short
answer is that since the spin does not precess around the field direction in the rotating frame, then
the field cannot be there!

The vector model can also be used to model off-resonance excitation. In this case the frame
rotates at the RF frequency, not the Larmor frequency, and so the spin is not quite static. This
means that the fictitious field does not quite cancel the main field, and a small residual magnetic
field remains. The total field experienced by the spin is then the vector sum of the residual field
along z and the excitation field along x, and the spin precesses around this vector sum. This sum
is longer than the excitation field, and so the precession frequency (Rabi frequency) is increased,
but it is tilted away from the xy-plane, so that precession will no longer drive the spin from the
+z to the −z axis (from |0〉 to |1〉).

Finally, as always, it is important to remember that the vector model is not peculiar to the
description of nuclear spins, although that is where it is most frequently used. The underlying
nature of any two level quantum system interacting with a radiation field is basically the same,
and so all these ideas can equally well be applied to atoms in laser fields. This approach ultimately
leads to the optical Bloch equations, which are analogous to the Bloch equations used to describe
the vector model in NMR systems.

4.8 Single qubit experiments

We have now seen two different possible implementations of a qubit. These are clearly very closely
related to one another: although each implementation has its own traditional language, each can
be described using the other’s language, or by the common language of qubits. We shall now
consider some simple single qubit experiments, and show how they can be considered as networks
of quantum gates.

The simplest experiment in coherent quantum control is Rabi flopping, which we have already
considered in some detail. The basic idea is that a quantum system begins in some ground state
|g〉, and radiation is applied which is resonant with an allowed transition to some excited state |e〉.
The populations of the ground and excited states are measured as a function of the time for which
the radiation is applied.
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As we have seen the Hamiltonian for this system9 can be written as

H = ~×
(

0 Ω/2
Ω/2 0

)
= ~Ω σx/2 (4.27)

where Ω is the Rabi frequency. Neglecting global phases, the corresponding propagator is

U =

(
cos(Ωt/2) −i sin(Ωt/2)
−i sin(Ωt/2) cos(Ωt/2)

)
. (4.28)

This propagator has already been examined in some detail, but it can be viewed in a quite different
way as the nth-power-of-not quantum logic gate10, with n = Ωt/π. When Ωt = π (a π-pulse, or
180◦ pulse) we get a not gate, which interconverts |0〉 and |1〉, while a 90◦ pulse produces equally
weighted superpositions of |0〉 and |1〉.

4.9 Ramsey fringes

Ramsey fringes occur when two 90◦ pulses are applied to a two level quantum system, separated
by a time period during which the system is allowed to undergo free evolution. The overall result
is a oscillation with a frequency depending on the energy gap between the two levels of the system.
Here we will show how this situation can be analyzed using a gate network.

The details of the analysis depends on the exact form of the 90◦ pulses, and in particular what
phase they have. The simplest situation occurs when they can be treated as Hadamard gates; as
shown in section 2.6 these are closely related to 90◦ pulses. Next we must consider how to represent
the period of free precession, during which the system evolves under the background Hamiltonian.
Working in the rotating frame this takes the form

H̃ =

(
1
2
~δ 0
0 −1

2
~δ

)
= ~δσz/2 (4.29)

and so the propagator describing the evolution is

U = exp(−iHt/~) = exp(−iδt σz/2) = cos(δt/2)σ0 − i sin(δt/2)σz (4.30)

where the last step is based on equation 2.17.
The experiment can now be described by the gate network HUH, and using the linearity of

matrix operations
HUH = cos(δt/2)Hσ0H − i sin(δt/2)HσzH. (4.31)

This expression can be simplified using Hσ0H = H2 = σ0 and HσzH = σx to obtain

HUH = cos(δt/2)σ0 − i sin(δt/2)σx = exp(−iδt σx/2) (4.32)

showing that the overall effect of the sequence is to perform Rabi flopping at a frequency which
depends on the internal frequency, δ = (E1 − E0)/~, of the system.

9Strictly speaking this is the Hamiltonian in the rotating frame after making the rotating wave approximation;
however we are free to work in any convenient frame and the approximation is generally good.

10As usual we are ignoring global phases.
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So why is this experiment known as Ramsey fringes? Suppose that the system starts off in
the ground state |0〉, and after a time t we measure the state in the computational basis. The
probability that the system is still in the ground state is then cos2(δt/2). In otherwise the signal
is time-modulated, and the modulation takes exactly the same form as the spatial modulation seen
in a two-slit experiment.

Now consider the more general case, when the two pulses are arbitrary 90◦ pulses. A detailed
analysis shows that the results are just the same, but that the phase of the fringes is shifted, with
the phase angle depending on the relative phase of the two pulses; the case described previously is
recovered when the phases of the two pulses are 180◦ apart.

4.10 Interferometry

We have already noted the similarity between Ramsey fringes and the two slit experiment, but
there is an even closer link with another experiment, the Mach–Zender interferometer. The key
component here is a beam splitter, which for a conventional interferometer (using visible light) is a
half silvered mirror, which has the property that if a photon is incident on the mirror it has a 50%
chance of being transmitted and a 50% chance of being reflected. If the reflected and transmitted
beams are then recombined using a second beam splitter, then conventional interference effects are
seen. If the interferometer is correctly set up, then light will only emerge on one side of the second
beam splitter, showing that the beam splitters split the light wave coherently, rather than in a
naive probabilistic fashion. Furthermore, the output result can be controlled by applying a relative
phase shift to the two beams in the interferometer.

A detailed analysis shows that Mach–Zender interferometry is essentially identical to the Ramsey
fringes experiment, with the two beam splitters corresponding to the two 90◦ pulses, and the relative
phase shift corresponding to the period of free evolution. For this reason beam splitters (which
can be built for many different particles, not just photons) are sometimes described as Hadamard
gates.

4.11 Spin echoes

We have already analyzed spin echoes as quantum networks in section 2.6, but it is interesting to
look at them using the vector model. Suppose we have a spin which starts along the x-axis, and we
allow it to precess at its own Larmor frequency ω for a time t; this will cause it to rotate around the
xy-plane through an angle φ = ωt. Next we apply a not gate, which is a 180◦ rotation around the
x-axis. This leaves the spin within the xy-plane, but moves it to a position with angle −φ. After
precessing at the same rate ω for another period t the spin is once more found along the x-axis.
The second not gate has no effect,11 and so the overall effect is that the spin ends the sequence
precisely where it started.

11The second not gate is necessary to deal with spins that start out away from the x-axis.
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Chapter 5

Two qubits and beyond

As we have seen, even a single qubit is a surprisingly interesting object. However the real power
of quantum information processing begins with systems of two ore more qubits. Before studying
these in detail we need to expand our notation a little.

Consider a system of two qubits, labeled a and b, each of which has two basis states, |0〉 and
|1〉. The whole system then has four basis states, which can be written as |0a0b〉, |0a1b〉, |1a0b〉, and
|1a1b〉, and can be found in any general superposition of these states, so that it occupies a four-
dimensional Hilbert space. In the same way, a system of three qubits inhabits an eight-dimensional
Hilbert space, and so on. This exponential increase in the size of the Hilbert space with a linear
increase in the number of qubits underlies the power of quantum computers.

5.1 Direct products

The size of the Hilbert spaces involved can also be a huge problem, however, making it difficult
to describe states of systems with many qubits. A partial solution is to note that some states can
be described in a simpler way, using the concept of direct products. These states, in which the
individual qubits can in principle be discussed separately, make up a tiny minority of the states
accessible to a multi-qubit system, but include many important states, most notably the basis
states. States of this kind are said to be separable, and states which are not separable are said to
be entangled. Entangled states are much more interesting than separable ones, but it is wise to
begin with the simpler case.

By the basis state |1a0b〉 we mean a state where qubit a is in state |1a〉 and qubit b is in state
|0b〉, and we can write this as |1a〉 ⊗ |0b〉, where the symbol ⊗ indicates a direct product. For the
moment we shall not worry too much about what a direct product really is, and just think of it
as a way of combining two subsystems; a more mathematical discussion can be found in the next
section. There is considerable variation in the way these states are described: |1a0b〉 can also be
written as |1〉 ⊗ |0〉, as |10〉, or most simply of all as |2〉, where this last version is obtained by
interpreting the 1 and the 0 as the two bits making up the binary number 10, or decimal 2. Most
authors move back and forth between these different notations, using whatever is most convenient
at the time. Of course, if the more compact forms are used, it is essential to use a consistent
ordering of the qubits to avoid ambiguous notation.

The direct product approach can also be used to describe more complex states. Suppose, for
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example, as Hadamard gate is applied to the second qubit of a system starting in the state |00〉.
This can be written as

|00〉 = |0〉 ⊗ |0〉 Hb−→ |0〉 ⊗ (|0〉+ |1〉)/
√

2 = (|00〉+ |01〉)/
√

2. (5.1)

Similarly, direct products can be used to write down single-qubit operators in a multi-qubit system
without the need for explicit labels: thus, for example, Hb = 11⊗H (that is, do nothing to the first
qubit and apply a Hadamard to the second qubit), while Ha = H ⊗ 11. Simultaneous Hadamard
gates can also be applied to both qubits, using H(2) = H⊗ H.

5.2 Matrix forms

Much of the point of the direct product approach is to avoid writing out explicit matrix descriptions
of states of multi-qubit systems, but sometimes it is useful to do so. The basic idea behind a direct
product is to multiply a copy of the second matrix by each element of the first matrix in turn: thus

(
a
b

)
⊗

(
α
β

)
=




aα
aβ
bα
bβ


 . (5.2)

Note that, for example, the matrix representation of |10〉 is

(
0
1

)
⊗

(
1
0

)
=




0
0
1
0


 , (5.3)

exactly what would be naively expected. An equivalent approach can be used for operators, so that
the matrix representation of Hb is

(
1 0
0 1

)
⊗ 1√

2

(
1 1
1 −1

)
=

1√
2




1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1


 . (5.4)

When an operator separately affects two different qubits it my be useful to use the fact that the
operator can be considered as two sequential operators, one affecting each qubit; thus applying H(2)

is the same as applying Ha followed by Hb, or vice versa. Similarly direct products and conventional
matrix products can be carried out in either order,

(a⊗ b) · (c⊗ d) = (a · c)⊗ (b · d). (5.5)

These methods frequently allows calculations to be simplified.
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5.3 Two qubit gates

We have already seen some two qubit gates: for example Hb implements a single qubit Hadamard
in a two qubit system, while H(2) represents simultaneous Hadamard gates in a two qubit system.
However these gates, which can all be written using direct products, are in some sense a trivial
extension of the corresponding gates in a single qubit system, and are usually described as single
qubit gates. A much more interesting two-qubit gate is the controlled-not gate which has the
explicit matrix form 



1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


 (5.6)

and a little thought shows that this matrix cannot be written as a direct product. It seems that
this operator might be more interesting than those discussed above, and this is indeed the case. In
particular the controlled-not gate is a key gate in the generation of entangled states. Furthermore,
it can be shown that the combination of the controlled-not gate and a small set of single qubit
gates is universal for quantum information processing, meaning that any desired operation can be
built from a network of these gates. A detailed proof of this statement is quite complex, but an
outline can be found in [Stolze 2004].

The reason why this gate is called a controlled-not gate can be easily seen by applying it to the
four basis states in turn, effectively evaluating its truth table. Clearly |00〉 and |01〉 are unaffected,
while |10〉 and |11〉 are interchanged. Thus, the effect of the controlled-not gate is to apply a not
gate to the second qubit if and only if the first qubit is in state |1〉. This is an example of controlled
evolution, in which the state of one qubit is used to influence the state of another, a process at the
heart of computation.

Yet another way of looking at the action of the controlled-not gate is to use the concept of
bitwise addition modulo 2, which simply means adding two bits, throwing away any carries that
are generated. Thus 0 ⊕ 0 = 0, and 0 ⊕ 1 = 1 ⊕ 0 = 1 as normal, but 1 ⊕ 1 = 0. Note that a ⊕ b
is equal to zero if a and b are the same, and is equal to one if a and b are different. Alternatively,
a⊕ b is equal to the xor (exclusive-or) of a and b.

A final description of the controlled-not gate is provided by noting that not is equivalent to
the X gate, and then seeking an expansion of the gate in terms of sums of direct products. The
action of controlled-not is to apply 11 to qubit 2 if qubit 1 is in state |0〉, and to apply X to qubit
2 if qubit 1 is in state |1〉. This can be written as

controlled-not = |0〉〈0| ⊗ 11 + |1〉〈1| ⊗ σx (5.7)

which can be confirmed by direct matrix calculations. Note that in cases such as this, where an
operator is written as a sum of direct products, it is essential to be careful about global phases: it
is not possible to replace the σx in equation 5.7 by 180x as these differ by a factor of i.

The controlled-not gate is commonly used in theoretical discussions of quantum information
processing, but in many experimental implementations it is easier to use a closely related gate, the
controlled-Z gate, which performs the transformation

|11〉 c−Z−→ −|11〉 (5.8)
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while leaving the other three basis states unaffected. This can be converted to a controlled-not
gate using a pair of Hadamard gates; the equivalence can be proved by brute force multiplication

1

2




1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1


 ·




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1


 ·




1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1


 =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


 (5.9)

or by more cunning methods which are explored in the problem set.

5.4 Networks and circuits

Unlike networks of single qubit gates, networks of two qubit gates are usually difficult to describe
in simple words, and it is much better to draw a quantum circuit. For example, equation 5.9 can
be redrawn as a network as shown below.

•
H • H

=
•
ÂÁÀ¿»¼½¾

(5.10)

In circuits like this each line corresponds to one qubit, and time runs from left to right, so that the
leftmost gate is the first gate applied. Single qubit gates are drawn on the relevant line, while two
qubit gates connect two lines.

The gate on the far right is a controlled-not gate, and the symbol is made up of three parts.
On the top line is a small filled circle, indicating that this qubit controls the gate. This control
mark is connected by a vertical line to the symbol ⊕ on the second qubit (the target qubit), and
this symbol indicates a not gate (this is a slight abuse of notation, which can be partly justified
by noting that a⊕ 1 = not(a)). Alternatively since the not gate is equivalent to an X gate, this
can be called a controlled-X gate (or just a c-X gate) and the ⊕ symbol replaced by an X in a box.

On the left hand side we have three gates, including two single-qubit Hadamard gates, applied to
the second qubit, and a peculiar two-qubit gate, comprising two control dots connected by a control
line. Once again this is an example of abuse of notation, and is used to indicate a controlled-Z
gate,

•
• =

•
Z

(5.11)

The justification for this abuse is the fact that the controlled-Z gate, unlike the controlled-not gate,
is symmetric between the control and target qubits: it is not meaningful to say which is which, as
the nominal roles could be interchanged with no effect! This symmetry is a characteristic of physical
interactions, and explains the importance of the controlled-Z gate in physical implementations.

An interesting circuit which can be built entirely out of controlled-not gates is the swap circuit
shown below

|a〉 • ÂÁÀ¿»¼½¾ • |b〉
|b〉 ÂÁÀ¿»¼½¾ • ÂÁÀ¿»¼½¾ |a〉

(5.12)

which acts to interchange the states of two different qubits. Exploring this circuit is a good first
exercise in playing with gates.
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5.5 Entangled states

We have already hinted at the existence of entangled states, which are states of a system of two
or more qubits which cannot be written as a direct product of single qubit states. Here we will
confine ourselves to two-qubit systems where the phenomenon of entanglement is relatively simple
and well understood. A simple way to generate an entangled state from a basis state is to use the
network

|0〉 H •
|0〉 ÂÁÀ¿»¼½¾

(5.13)

and we can follow through this network a step at a time

|00〉 Ha−→ (|00〉+ |10〉)/
√

2 (5.14)
c-X−→ (|00〉+ |11〉)/

√
2 (5.15)

where the first line follows from the properties of the Hadamard gate and the second line is obtained
by using the fact that the controlled-not gate is a unitary operation, and thus a linear operation,
and so its effect on a superposition can be obtained by applying the gate to each of the terms in
turn. The final state looks simple enough, but has some very peculiar properties! This state is
inseparable, which means that it cannot be written as a direct product of states of the two individual
qubits. In turn this means that the properties of the state cannot be fully described by listing the
properties of the two qubits involved: rather they are properties of the two qubit state taken as a
whole.

To take a simple example, consider measuring the state of the first qubit. The system is in an
equally weighted superposition of two states, in one of which it the first qubit is in |0〉, and in the
other the first qubit is in |1〉. Thus any measurement of the first qubit will return either |0〉 or |1〉,
at random and with equal probability. This is not particularly odd; what is odd is the effect that
measuring the first qubit has on the second qubit. Our entangled state is a superposition of two
states, in both of which the two individual qubits have the same state; thus if we measure qubit
one and find it is in |0〉 we know immediately that qubit two must also be in state |0〉! Similarly,
if we find qubit one in |1〉 then qubit two will also be in |1〉. The behavior of the two qubits is
completely intertwined, or entangled.

The state discussed above is only one example of an infinite number of possible entangled states.
Particularly important among these are the four Bell states, which are maximally entangled states,
meaning that their behavior is as unlike direct product states as possible. These states are defined
by

φ± = (|00〉 ± |11〉)/
√

2 ψ± = (|01〉 ± |10〉)/
√

2 (5.16)

and so the state discussed previously is a φ+ Bell state. Note that the four Bell states form an
orthonormal basis for the maximally entangled states.
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Chapter 6

A peek into the future

We finally have all the basic tools we will need to describe systems of one and two qubits. In this
last chapter we look at some of the consequences of the peculiar properties of quantum systems,
and see how they might prove useful.

6.1 Measuring a single qubit

A key result in quantum information theory is that it is impossible to accurately characterize a
single qubit. In other words, there is no experiment, or sequence of experiments, which allow us to
find out the state of a single quantum bit.

The reason for this problem is two-fold. Firstly, we have to make some sort of decision about the
basis we will use for our measurement. For example, when measuring a single qubit the most popular
choice is to make a measurement in the computational basis. This is equivalent to asking the qubit
whether it is in |0〉 or |1〉. If the qubit is indeed in |0〉 or |1〉 the measurement process is simple,
and we will get the obvious answer. If, however, the qubit is in a superposition, such as α|0〉+β|1〉,
then the situation is more difficult. Characterizing the state now means determining the values of
α and β, but the measurement can only return the answer 0 or 1, and for a superposition state one
of these two answers will be returned at random, with probabilities |α|2 and |β|2 respectively.

Clearly we cannot characterize a superposition state in a single measurement, but why not just
make repeated measurements, and so gain statistical information about α and β? The problem is
that the first measurement does not leave the state unaffected: if the first measurement returned
0 then the state is changed to |0〉, and if the first measurement returned 1 the state is changed to
|1〉. Any subsequent measurement of the state will therefore return the same answer as before, and
no more information can be obtained. This point was addressed briefly in section 2.7.

This measurement behavior is so strange that it is good to go back to a few simple examples.
The classic example of a quantum measurement is a Stern–Gerlach apparatus, which measures the
projection of a spin onto some axis. This is, of course, entirely equivalent to measuring a qubit in
some basis: a Stern–Gerlach apparatus aligned along the z-axis is equivalent to a measurement in
the computational basis, while one aligned along the x-axis is equivalent to a measurement in the
|±〉 = (|0〉±|1〉)/√2 basis (consider the location of these states on the Bloch sphere). Measurements
of this kind always produce one of two results: the spin is either parallel or antiparallel to the
measurement axis. If the spin is neither parallel or antiparallel then one of the two permitted
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results is returned at random, with probabilities depending on the projection of the spin onto the
axis.

One might ask what is so special about the computational basis, and the short answer is that
measuring in any other basis is ultimately equivalent. The key thing about the computational basis
is simply that it is an orthonormal basis, as the only quantum measurements that work reliably
are those where the possible answers correspond to orthonormal states1. However any orthonormal
basis is (in principle) as good as any other, and we can choose some other basis without altering
the underlying ideas.

Returning to our Stern–Gerlach apparatus, the situation becomes much more interesting when
considering a cascaded network of measurements such as that shown below.

|ψ〉
Z

|0〉
X

|+〉
Z

|0〉
|1〉 |−〉 |1〉

(6.1)

Suppose we measure the z-component of a spin, and find it to be |0〉, and then measure the x-
component of a spin and find it to be |+〉. Finally we measure the z-component again, and get
the remarkable effect that the result is either |0〉 or |1〉, each with 50% probability. This is easy to
justify using quantum mechanics (the effect of the x-measurement is to change the state to either
|+〉 or |−〉), but hard to make sense of in any other way.

The same result can be experimentally demonstrated even more simply using polarized light. In
this case horizontally and vertically polarized light corresponds to the computational basis states,
|0〉 and |1〉, while light polarized at ±45◦ corresponds to the |±〉 states. Suppose a photon is passed
through a pair of crossed polarizers: the only photons that can get through are those which were
in |0〉 at the first polarizer and in |1〉 at the second one, and so no light is transmitted. But if a
polarizer at ±45◦ is placed between the two crossed polarizers, then the intervening measurement
changes the states of the photons, allowing some of them to pass!

If we do know something about the state of the qubit, the situation is radically changed. For
example, if we know the qubit is in either |0〉 or |1〉 then a measurement in the computational basis
will immediately tell us which one it is. Next consider a qubit which is known to be in one of
the two superposition states |±〉. In each case measurement in the computational basis will return
either |0〉 or |1〉 with 50% probability, and so this measurement basis tells us nothing useful about
the state. The two states are, however, orthonormal, and so should be completely distinguishable!
This can of course be achieved by measuring in the |±〉 basis, usually called the X-basis, which
always returns either |+〉 or |−〉.

Now suppose we have a qubit in either |0〉 or |1〉 and choose to measure its state in the X-basis.
In this case the measurement will return either |+〉 or |−〉, each with 50% probability, and we learn
nothing at all about the state. While we can optimize our measurement process for any particular
pair of states we cannot simultaneously optimize it for all possible states. Clearly if the state of
the qubit is unknown it is impossible to optimize the measurement.

More insight into the measurement process can be obtained by using a Bloch sphere picture.
The two states |0〉 and |1〉 lie at the north and south poles of the Bloch sphere, and a measurement

1There is a substantial subfield of quantum information theory which considers how to make measurements that
seek to distinguish states that are not orthonormal. The detailed answers are quite complicated, but the key result
is that such measurements cannot be made to work with perfect reliability, and they do not fundamentally change
the discussion above.
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in the computational basis applied to a general state is essentially a method of estimating its
projection onto the z-axis. The two basis states |0〉 and |1〉 lie at opposite ends of the z-axis, and
are easily distinguished. By contrast the states |±〉 lie at opposite ends of the x-axis, and the
projection onto the z-axis is zero for both states, showing that they cannot be distinguished. These
states are best distinguished by their projections onto the x-axis, that is by measurements in the
X-basis, but this is completely useless for the states |0〉 and |1〉, whose projection onto the x-axis
is zero. A measurement will only be perfect if the measurement axis is parallel to the state, and
will be completely useless if the measurement axis is perpendicular to the state. For a completely
unknown state there is no sensible way to choose the axis, and any measurement is as good as any
other.

6.2 Ensembles

So far we have assumed that we have only one copy of our unknown quantum state. Suppose,
however, that we have a large number of identical copies of the state, a situation usually called an
ensemble. If the state is |ψ〉 then the ensemble can be written as

(|ψ〉)n =
n⊗
|ψ〉 =

n terms︷ ︸︸ ︷
|ψ〉 ⊗ |ψ〉 ⊗ · · · ⊗ |ψ〉 (6.2)

which is a direct product of copies of the unknown state. The significance of the direct product
form is that the individual copies of the state are independent, in the sense that manipulating one
qubit does not affect any others. By performing several different measurements on many copies of
the state we can get a very good idea of what the state is.

It might seem that this offers a solution to the problem of characterizing an unknown state: all
that is necessary is to make an ensemble of copies of the state and then measure these! As we shall
see, however, this process is impossible.

6.3 The no-cloning theorem

The no-cloning theorem is arguably one of the most important results in the whole of quantum
information theory, but it is also one of the simplest. It is possible to copy classical information
without limits2, but it is almost trivial to prove that an unknown quantum state cannot be copied
(cloned). A brief proof is sketched below; for more details see [Stolze 2004] or [Nielsen 2000].

The proof proceeds by contradiction. Suppose a quantum cloning device, capable of accurately
copying a completely unknown state, did in fact exist. Clearly such a device must be capable of
copying the two basis states |0〉 and |1〉. Copying the two basis states is easy, and can in fact be
achieved by a controlled-not gate, which performs

|0〉|0〉 −→ |0〉|0〉 |1〉|0〉 −→ |1〉|1〉 (6.3)

as desired. However this approach cannot be used to clone a general state, such as

|ψ〉 = α|0〉+ β|1〉. (6.4)

2This fact has caused considerable annoyance to companies trying to sell recorded music!
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If a controlled-not gate is used to “copy” this state, the result will be

α|0〉|0〉+ β|1〉|1〉, (6.5)

a result which follows immediately from the linearity of the controlled-not gate. This state should
be compared with the desired state, which has the form

|ψ〉 ⊗ |ψ〉 = α2|0〉|0〉+ αβ|0〉|1〉+ βα|1〉|0〉+ β2|1〉|1〉. (6.6)

Clearly these states are only the same in the extreme limits of α = 1 (implying β = 0) or β = 1,
that is when the state being copied is a basis state. This result suggests that quantum cloning is
indeed impossible, but is not completely convincing as one particular operation for cloning the basis
states has been assumed. However a little thought shows that any other putative cloning method
is fundamentally equivalent to a controlled-not gate, and the argument is basically sound. Just
as was the case for characterizing a quantum state, it is possible to optimize the cloning process to
work for a particular pair of states, but no solution exists for an unknown state.

Accepting that an unknown quantum state cannot be copied accurately, one might still ask
whether the output of a quantum cloner could in any way assist an attempt to characterize an
unknown state. In fact the form of the state in equation 6.5 immediately rules this out, as this is
an entangled state, in which the properties of the two qubits are completely correlated. Once the
first qubit has been measured we know that the second qubit will have the same state; actually
measuring this state tells us nothing new about the system.

There is in fact an important link between the problem of measurement and the no-cloning
theorem. The fact that an unknown quantum state cannot be copied means that the measurement
problem cannot be overcome by copying. Similarly, the inability to accurately characterize an
unknown state rules out an obvious cloning strategy: measuring the state precisely and crafting
identical copies. These two interlinked phenomena lie at the heart of one of the most important
applications of quantum information processing, called quantum cryptography.

6.4 Fidelity

The discussions above prove that it is impossible to perform certain operations on quantum bits
without the possibility of error. The obvious question is then how accurately these operations can
be performed. Critical to these questions is the concept of fidelity, which measures how close two
states (or, by extension, two operations) are to one another. We have previously seen the basic
definitions for the fidelity between two pure states |φ〉 and |ψ〉

F (|φ〉, |ψ〉) = |〈φ|ψ〉|2 = 〈ψ|φ〉〈φ|ψ〉 (6.7)

and its extension to measure the fidelity between a pure state |ψ〉 and a mixed state3 described by
a density matrix ρ

F (ρ, |ψ〉) = 〈ψ|ρ|ψ〉 (6.8)

3It can also be extended to measure the fidelity between two mixed states, but the definition becomes complicated;
see [Nielsen 2000] for details.
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which clearly reverts to the original form for two pure states, when ρ = |φ〉〈φ|. To take a simple
example, consider the fidelity between a general state and itself:

F =
(
α∗ β∗

) (
αα∗ αβ∗

βα∗ ββ∗

)(
α
β

)
(6.9)

= (|α|2 + |β|2)2 (6.10)

= 1. (6.11)

A more interesting case is the fidelity between an arbitrary pure state and the same state after a
measurement in the computational basis:

F =
(
α∗ β∗

) (
αα∗ 0
0 ββ∗

)(
α
β

)
(6.12)

= |α|4 + |β|4 (6.13)

= (|α|2 + |β|2)2 − 2|α|2|β|2 (6.14)

= 1− 2|α|2|β|2. (6.15)

Clearly the process of measurement damages a state unless the state is a basis state of the mea-
surement (so that either α or β is equal to zero). The worst case occurs for states like |±〉 for which
|α| = |β| = 1/

√
2, resulting in a fidelity of F = 1/2. For the general case it can be shown that the

average fidelity of a state after a measurement is 2/3.
This result can be interpreted in two different ways. Firstly, as noted above, measuring an

unknown state will damage it, and so it is always possible to check whether someone has been
looking at your “secret” state.4 Secondly, the state after the measurement also describes the state
of knowledge of the person who performed the measurement, and this shows that their knowledge
of the state can never be perfect unless the correct measurement basis was used.

6.5 Local operations and classical communication

So far we have considered two qubit states where both qubits are accessible to us. The situation
becomes much more interesting when different qubits are controlled by different people.

Consider two people, traditionally called Alice and Bob, each of whom have one qubit5 of a
two qubit system. We assume that they can both manipulate their own qubit in any way they
desire: they can apply single qubit logic gates, make measurement, etc., but they have no direct
access to the other person’s qubit. Speaking technically, we say that Alice and Bob have access
to the complete set of local operations. We also assume that Alice and Bob can communicate by
sending classical messages, reporting the results of measurements on their own qubits, or asking
that certain gates be applied to the other person’s qubit. This set of abilities is described as local
operations and classical communication, usually abbreviated to LOCC.6

4This fact underlies the idea of quantum money, which was invented by Steven Wiesner long before quantum
information theory was thought of, and ultimately underlies quantum cryptography.

5That is, they have possession and control of the physical system used to implement the qubit.
6By local, here, we mean local in the obvious every day sense, rather than in the relativistic sense; however the

extension to include classical communications, which we assume to be limited by the speed of light, means that
LOCC is equivalent to relativistically local.
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If the two qubit system is in a separable state then nothing mysterious occurs. Recall that it is
the nature of a separable state that the two qubits have individual properties, and it makes sense
to treat them as individual objects. If the two qubits are entangled, however, then the situation is
entirely different! It is no longer really possible to talk about the two qubits as separate objects.
As a simple example, suppose Alice and Bob share a pair of qubits in the entangled state

φ+ = (|00〉+ |11〉)/
√

2 (6.16)

and that Alice applies a not gate to her qubit (assumed to be the qubit listed first in our notation).
The result is

(|10〉+ |01〉)/
√

2 = ψ+. (6.17)

In a similar way, Alice can convert the state into any one of the four Bell states, and Bob can do
the same thing. It is no longer possible to divide up the state into portions controlled by Alice
and portions controlled by Bob: they both have equal control over the entire state. This behavior
lies at the heart of quantum communication protocols such as quantum dense coding which will be
explored later; less positively it also makes certain elementary cryptographic operations impossible
in the quantum world, most notably the impossibility of quantum bit commitment.

Given this key distinction between separable and entangled states, it is reasonable to ask whether
Alice (with or without help from Bob) can turn an initially separable state into an entangled state
using only local operations and classical communications. It is a key result in quantum information
theory that this is impossible, and more generally the amount of entanglement in a quantum system
cannot be increased by LOCC. If Alice and Bob wish to use an entangled state they must either
create one by applying two qubit gates (which requires the two qubits to be brought into direct
contact), or use a state prepared by some third party. For simplicity we can often assume that
Alice prepares the entangled state and gives one qubit to Bob. It is a curious fact about many
quantum communication protocols that it does not matter where the entangled state comes from: if
a malicious person seeks to cheat by providing the wrong state then this fact can be easily detected.

6.6 The EPR problem

One of the most vivid illustrations of the sheer weirdness of entangled states is provided by the
Einstein–Podolsky–Rosen (EPR) thought experiment, which was put forward in 1935 as an argu-
ment that quantum mechanics could not possibly be correct: the predictions quantum mechanics
made about the results of this experiment were so ludicrous7 that they could not possibly be true.
While thought experiments can be interesting, real experiments are more convincing, and in 1951
David Bohm tightened up the EPR argument and described a thought experiment which could
potentially be done. This experiment has subsequently been performed, and quantum mechanics
appears to have won.8

7In particular when interpreted naively they appeared to be inconsistent with relativity; whether they actually
are inconsistent is a much more interesting question.

8Purists would point out that experimental imperfections in the current systems mean that the results can in
principle be explained away, and it is true that an absolutely convincing loophole free test has yet to be carried
out. Indeed coming up with new loopholes forms a minor industry among quantum information theorists. However
as experiments improve these theories are becoming increasingly bizarre and contrived, and they are usually called
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The modern form of the EPR argument assumes that Alice and Bob each have one qubit from
an entangled two qubit state which is in the Bell state |ψ−〉. This state is often called the singlet
state, because if the two qubits are spins then this is the state with total spin zero; the other
three Bell states have total spin one and correspond to triplet states. If Alice and Bob measure
their respective qubits in the computational basis then they will each get |0〉 and |1〉 at random; if,
however, they compare their results they will notice that whenever Alice got |0〉 then Bob got |1〉,
and vice versa. We have seen this behavior before, but the choice of the singlet state (rather than
one of the triplet Bell states) makes the situation even more interesting, as Alice and Bob will get
corresponding results whatever basis they choose for their measurements.9 Suppose, for example,
they choose to measure in the |±〉 basis: in this case they will both observe |+〉 and |−〉 at random,
but whenever Alice observes |+〉 then Bob will observe |−〉, and so on.

Now let us look at the situation purely from Alice’s point of view: suppose she measures her
qubit in the |±〉 basis and observes |+〉. From this fact she immediately knows that if Bob measures
his qubit in the |±〉 basis then he will observe |−〉. It seems as if Alice’s local actions can affect the
state of Bob’s qubit, even though the two qubits are not interacting with one another. Furthermore,
this effect appears to occur instantaneously, rather than propagating at or below the speed of light.
Einstein referred to this as “spooky action at a distance” (spukhafte Fernwirkung).

6.7 The Bell inequalities

In an attempt to exorcize the spooks, various physicists tried to explain the EPR effects by hidden
variable theories. The key idea behind these theories is that, in addition to the obvious properties
which we can measure directly, quantum particles can possess additional properties which are hidden
from direct observation but which determine the behavior of the particles in situations such as the
EPR experiment. This whole enterprise was crucially undermined in 1964 by John Bell, who showed
that any local hidden variable theory must necessarily make predictions which are inconsistent with
those made by traditional quantum mechanics. In essence the procedure is to compare the results
of a large number of measurements where Alice and Bob choose their measurements at random; the
results of these experiments can be boiled down into a single number, which for any local hidden
variable model must always be less than or equal to 2. By contrast quantum mechanics predicts
that this number can rise as high as 2

√
2.

The Bell inequalities will be studied in considerable detail next term;10 for the moment we simply
note three consequences. Firstly, the arguments used by Bell are of a simple and fundamental kind,
and this is even more true of later refinements: a system that breaks a Bell inequality cannot
be described in any straightforward way as a system made up of two independent subsystems.
Secondly, many experiments appear to break the Bell inequalities, suggesting that the real world
cannot be described in any straightforward way. Thirdly, the impossibility of “mocking up” behavior
which breaks the Bell inequalities explains why it is essentially impossible for a dishonest third party

conspiracy theories in recognition of this fact. A more hard line approach is taken by a small band of philosophers,
who claim that the reasoning underlying Bell’s argument is fundamentally flawed. For a friendly introduction to
these ideas see [Mermin 1990].

9This fact is most simply proved by showing that |ψ−〉 is left unchanged by any bilateral unitary transformation,
that is any case where the same unitary transformation is applied to both qubits.

10For a friendly introduction see [Mermin 1990]; for a bit more detail try [Bell 2004].
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to deceive Alice and Bob by providing fake entangled states.

6.8 Faster than light?

We have already noted that one of the most intriguing properties of the correlations observed in
singlet states is that the effect appears to be instantaneous, and this immediately suggests the
possibility of using entanglement to build a faster than light communicator. Sadly,11 however, this
turns out to be impossible. It is straightforward to show that a faster than light communicator could
be built if it were possible to completely characterize an unknown quantum state. But, as we have
already seen, this cannot be done. Combing our previous results, it seems that the measurement
problem, the no-cloning theorem, and the impossibility of faster than light communication are
all inextricably interlinked. It can also be shown that these limits are linked to limits on the
power of computers: a world which permits quantum cloning (or, equivalently, accurate quantum
measurement) would also permit any mathematical problem to be solved arbitrarily fast. Faster
than light communication is also closely linked to the possibility of time travel. Rather than being
a limitation, the no-cloning theorem seems to be essential to prevent a quantum universe from
descending into insanity!

11Or happily, depending on your point of view.
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Appendix A

Single qubit gates

Here I list some of the most important single qubit gates, and some relationships between them.
The notation is partly based on that of [Nielsen 2000], which also covers multi-qubit gates.

11 = σ0 = I =

(
1 0
0 1

)
(A.1)

i180x = σx = X =

(
0 1
1 0

)
(A.2)

i180y = σy = Y =

(
0 −i
i 0

)
(A.3)

i180z = σz = Z =

(
1 0
0 −1

)
(A.4)

90x =
√

X/i =
1√
2

(
1 −i
−i 1

)
(A.5)

90y =
√

Y/i =
1√
2

(
1 −1
1 1

)
(A.6)

S =
√

Z =

(
1 0
0 i

)
(A.7)

H =
1√
2

(
1 1
1 −1

)
(A.8)

Note that X2 = Y2 = Z2 = H2 = I and that S2 = Z. The Hadamard gate H can be implemented in
may different ways, such as H = S 90x S = 90y Z. Other identities include HZH = X and HXH = Z.
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Appendix B

Quantum optics

In the main text I have adopted a traditional semi-classical approach to describing transitions
between energy levels of a quantum system, in which light is treated as a classical oscillating
electric or magnetic field. This approach works well, but clearly it cannot be quite right, as light
is itself a quantum system. Here I briefly discuss how a full quantum mechanical treatment of
light-matter interactions can be developed, and why it is rarely necessary.

The key step is to see that, from a quantum mechanical point of a view, a light field is nothing
more than a thinly disguised harmonic oscillator, with the number of photons in the light field
corresponding to the quantum number in the harmonic oscillator. Note that the energy of a light
field containing n photons is normally written as En = nhν (the photons do not interact with one
another and so the energy of n photons is simply n times the energy of a single photon), while
the energy of the nth level of a harmonic oscillator is En = (n + 1

2
) ~ω. Clearly these formulae are

essentially equivalent.
The standard way to treat a quantum harmonic oscillator is in terms of the raising operator A†

and the lowering operator A, which perform

A†|n〉 =
√

n + 1 |n + 1〉 A|n〉 =
√

n |n− 1〉 (B.1)

increasing or decreasing the quantum number by 1. Entirely equivalent operators can be used
to describe a light field: a†, the creation operator, creates an additional photon in the light field
(increases n by 1), while a, the annihilation operator, destroys a photon (reduces n by 1).

A similar approach can be used to define two related operators for a qubit, σ and σ†, defined
by

σ = 1
2
(σx + iσy) =

(
0 1
0 0

)
(B.2)

and

σ† = 1
2
(σx − iσy) =

(
0 0
1 0

)
(B.3)

which convert |1〉 to |0〉 and vice versa. Note that σ† is the Hermitian conjugate of σ as expected;
the same thing is, of course, true for a and a†, although in this case a matrix representation must be
infinite dimensional! If, however, we assume that the system can only contain zero or one photons,
then a and a† take the same forms as σ and σ†.
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We are now in a position to write down the interaction between the light field and the atom.
Two basic events can occur: the absorption of a photon, with consequent excitation of the atom,
and emission of a photon, with de-excitation, and both of these processes happen at the same rate,
which we can call Ω/2. Thus the Hamiltonian is

H = 1
2
~Ω

(
aσ† + a†σ

)
(B.4)

where we are assuming that the light is exactly resonant with the field, and we have chosen one
particular phase for the light. This can be written out explicitly by noting that the light field can
be treated as another qubit (remember that we are assuming the light field contains zero or one
photons) and using the usual direct product approach gives

H =




0 0 0 0
0 0 ~Ω/2 0
0 ~Ω/2 0 0
0 0 0 0


 (B.5)

showing that the Hamiltonian is block-diagonal, dividing into a central two by two block and two
outer elements; the corresponding propagator

U = exp(−iHt/~) =




1 0 0 0
0 cos(Ωt/2) −i sin(Ωt/2) 0
0 −i sin(Ωt/2) cos(Ωt/2) 0
0 0 0 1


 (B.6)

has the same structure. Clearly the state |00〉 does not evolve (the ground state of the atom cannot
emit a photon, and there is no photon present for it to absorb), and a similar (but more subtle)
argument applies to |11〉. The interesting behavior occurs in the central block, which is identical
to the Hamiltonian describing the interaction of a qubit with a classical field. Thus the state of the
atom undergoes Rabi oscillations, while the state of the light field also oscillates in the opposite
direction.

Another way of looking at this situation is to consider the propagator in the case that Ωt = π
(a 180◦ pulse), for which

U =




1 0 0 0
0 0 −i 0
0 −i 0 0
0 0 0 1


 . (B.7)

Neglecting a few phases this is essentially a swap quantum logic gate: the interaction between the
light and the atom acts to swap quantum information between the two qubits. More interesting
behavior occurs when Ωt = π/2, as this creates an entangled state of the atom and the light field.

Quantum optics is an interesting and important topic in its own right, but the above hints at a
potential problem with implementing quantum computers with atomic states in the way described
previously: it appears that applying single qubit gates to the atom will inevitably entangle it with
the light field. Any process that effectively measures the light field, causing it to decohere, will also
cause the atomic state to decohere at the same time.
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The solution to this problem is that a classical light field does not correspond to a state with
a well defined number of photons (a Fock state), but to a much more interesting state known as a
coherent state. Coherent states take the form

|α〉 = exp(−|α|2/2)
∞∑

n=0

αn

√
n!
|n〉 (B.8)

where α is some complex number, and have the useful property that they are eigenstates (techni-
cally, right-eigenstates) of the annihilation operator:

a|α〉 = α|α〉 (B.9)

(for the details see [Barnett 1997]). Thus it is possible to remove a photon for a coherent state
without changing it in any way! If a coherent state is used to excite an atom then the light and
the atom do not become entangled.
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