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1 Introduction

In previous lectures you have seen how simple quantum systems like a qubit with only two basis
states |0〉 and |1〉 can be used to perform quantum information processing (QIP) by applying
unitary transformations U to it. It is not obvious that there are realistic physical systems which
– under certain conditions – behave like a qubit and allow to perform quantum gates. In the
following two lectures we will look at atoms in electromagnetic fields and show that this can
indeed be achieved. We start by considering an atom interacting with a laser field and afterwards
consider the case of nuclear spins in a magnetic field.

2 Atom in a laser field

In this section we look at the time evolution of an atom that interacts with a classical laser
field. Our treatment will neglect any effect of spontaneous emission, i.e. we will only consider
the coherent part of the time evolution. In the next section we will then discuss under which
situations such a treatment can be valid.

2.1 Hamiltonian of an atom

We first consider the Hamiltonian HA of an atom ignoring any interaction with an electromag-
netic field. The eigenstates of the atom are labelled by |n〉. Although it is not possible to
analytically calculate these eigenstates for atoms more complicated than hydrogen their prop-
erties like e.g. the energy or the symmetries of the corresponding wave functions are well known
for a variety of atoms from experiments, simple approximations, and numerical calculations (see
lectures on atomic physics). We will not attempt to calculate them but instead assume that
they are known and we can thus simply write (in units ~ = 1)

HA |n〉 = ωn |n〉 (1)

with a given value for ωn. As HA is Hermitian its eigenstates form a basis and we can therefore
express the wave function |Ψ〉 of the atom in terms of this basis

|Ψ(t)〉 =
∑

n

cn(t) |n〉 (2)

where cn are found to be cn = 〈n| Ψ〉. 1 In the previous lectures on QIP this system Hamiltonian
HA was referred to as the background Hamiltonian.

2.2 Interaction of the atom with a classical laser field

Next we consider a classical laser field with frequency ω and wave vector k. The electric field
at time t and position x is given by

E(x, t) = E(t)εe−i(ωt−k·x) + c.c (3)

where ε is the polarization vector and E(t) is a slowly varying amplitude (which we will assume
to be almost constant in time). At optical frequencies the interaction between the atom and
the magnetic field of the laser is negligible and we therefore only have to determine the effects

1Note that strictly speaking the above sum should also contain the continuous part of the spectrum describing
ionized states which we do not indicate separately here for simplicity.
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of the electrical field on the atom. Since the size of the atom will typically be of the order of
the Bohr radius a0 while the typical wave length of a laser is several hundred nanometers we
can assume the electric field to be constant over the size of the atom which we assume to be
trapped (more on trapping in Sec. 5) at the position x = 0. The interaction energy of atom and
laser in dipole approximation is given by µ ·E(0, t) with µ the atomic dipole which leads to the
interaction Hamiltonian

Hint = µ̂ ·E(0, t) (4)

where now µ̂ is the atomic dipole operator (see problem 1 for a simple example on hydrogen like
atoms). The Hamiltonian Hint describes the laser control field interacting with the atom.

2.3 Time evolution of the atom in the laser field

Let us assume that the frequency of the laser ω is close to the transition frequency between
ground and first excited state, i.e. ω ≈ ω1 − ω0 and very different from any other transition
frequency. With the dipole matrix elements µnm = 〈n| µ̂ · ε |m〉 we find for the time evolution of
the atoms under the Hamiltonian H = HA+Hint using the time dependent Schrödinger equation
i |Ψ〉 = H |Ψ〉 and Eq. (2)

i
dck
dt

= ωkck −

(∑
n

µknE(t)e−iωtcn(t) + c.c.

)
. (5)

We now assume that the atom is initially in its ground state |Ψ(t = 0)〉 = |0〉, i.e. cn = δn0

and make a Floquet ansatz for the coefficients cn =
∑∞

l=−∞ c
(l)
n e−i(ω0+lω)t with initial condition

c
(l)
n = δn0δl0. We thus find

ic
(l)
k (t) = (ωk − ω0 − lω)c(l)k (t)−

∑
n

µknE(t)c(l−1)
k (t)−

∑
n

µnkE∗(t)c
(l+1)
k (t) (6)

From this equation we see that almost every coefficient will be oscillating very quickly with
a frequency difference δlk = lω − (ωk − ω0) and only the two coefficients c(0)0 and c

(1)
1 , where

according to our assumption of ω ≈ ω1 − ω0 the quantity δlk is small, will be varying slowly in
time. The quickly oscillating contributions to the above sums in Eq. (6) will average out over the
longer time scales relevant for c(0)

0 and c(1)1 . Therefore we are led to the two level approximation
(considering only populations in the two levels |0〉 and |1〉) and the so called rotating wave
approximation (neglecting all terms oscillating on a short (optical) time scale). Applying these
approximations to the above Eq. (6) we find

ic
(0)
0 = −Ω∗(t)c(1)1

ic
(1)
1 = −∆c(1)1 − Ω(t)c(0)0 . (7)

where ∆ = δ11 is called the detuning, it is the difference between the laser frequency and the
atomic transition frequency. Furthermore we have defined the Rabi-frequency Ω(t) = 2µ10E(t)
which is proportional to the strength of the electric field of the laser light.

2.4 Allowed and forbidden transitions

The above analysis shows that under a number of assumptions on the laser parameters and
properties of the atom the whole dynamics of the atom is described by only taking two of the
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eigenstates into account. In a realistic atom there are lots of eigenstates which quite often lie
close together (see problem 3) However, even in this situation it is often possible to use a laser to
selectively interact with only two levels as a number of transitions will be dipole forbidden. For
a forbidden transition between |n〉 and |k〉 the dipole matrix element µkn is zero and thus there
will be no contribution to the above sums of Eq. (6) even if this transition is near resonant.

2.5 Two level atom in the laser field

We can now proceed by introducing a reduced (time dependent) basis consisting only of the two
states

∣∣0̃〉 = |0〉 and
∣∣1̃〉 = e−iωt |1〉. We use these two states as our qubit and leave out the˜in

the following. According to the above discussion the time evolution of the atom is then given
by |Ψ(t)〉 = c

(0)
0 (t) |0〉 + c

(1)
1 (t) |1〉. In matrix form the evolution equation for the coefficients is

given by

i

(
ċ
(0)
0

ċ
(1)
1

)
= Hred

(
c
(0)
0

c
(1)
1

)
. (8)

which is a Schrödinger equation for a two level system with the reduced Hamiltonian

Hred =
(

0 Ω∗/2
Ω/2 −∆

)
. (9)

In Dirac notation this Hamiltonian is denoted as Hred = −∆ |1〉 〈1|+ (Ω |1〉 〈0|+ h.c.). We note
that the parameters appearing in this Hamiltonian can be adjusted experimentally in a wide
range as they are determined by external laser parameters.

3 Raman pulses

The above scheme for implementing single qubit operations in atoms brings along a number
of problems we have gently overlooked until now. One of the most important ones is that the
excited state |1〉 will spontaneously decay and as the transition from state |1〉 to |0〉 was assumed
to be dipole allowed this will usually happen on a fast time scale typically on the order of ns and
destroy the quantum information stored in the atom. Also we have chosen a time dependent
basis for the qubit above which oscillates at an optical frequency. This large frequency will make
it experimentally very hard to keep track of the phase of the excited state |1〉. Therefore we
will now look at a different atomic configuration which does not suffer from these problems. It
involves two classical laser beams and three of the atomic states.

3.1 The λ system driven by two lasers

We consider the situation where two laser beams with Rabi frequencies Ω0 and Ω1 drive transi-
tions between the atomic states |0〉 ↔ |e〉 and |1〉 ↔ |e〉, respectively. The states |0〉 and |1〉 are
assumed to be chosen from the ground state manifold of the atom and the state |e〉 is an excited
state. We denote the detunings of the two lasers from the atomic transitions by ∆0 and ∆1,
respectively. In a realistic situation this can be achieved by making use of the selection rules
and/or choice of frequencies. In a very similar way as above we find the Hamiltonian for this
situation to be

H = −∆R |e〉 〈e|+
(

Ω0

2
|e〉 〈0|+ h.c.

)
+
(

Ω1

2
|e〉 〈1|+ h.c.

)
− δ |1〉 〈1| , (10)
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where ∆R is the detuning of the laser Ω0 from the transition |0〉 ↔ |e〉 and δ is the detuning of
the Raman transition from the transition |0〉 ↔ |1〉. The laser parameters are chosen such that
∆R � Ω0,Ω1, δ.

3.2 Reduction to a two level system

With the above choice of parameters the excited state |e〉 will hardly be occupied and therefore
we will try to eliminate it from the dynamics of our system. We write the wave function of the
system (in the time dependent basis) as |Ψ(t)〉 = c0(t) |0〉+ c1(t) |1〉+ ce(t) |e〉 and find for the
evolution equation for ce(t) from the Schrödinger equation

iċe(t) = −∆Rce(t) + (Ω0c0(t) + Ω1c1(t))/2. (11)

The solution of this equation with initial condition ce(−∞) = 0 is given by

ce(t) = −i
∫ t

−∞
dt′e−i∆R(t−t′)(Ω0c0(t′) + Ω1c1(t′))/2. (12)

Since ∆R is much larger than any other frequency appearing in this problem the coefficient ce(t)
will change very quickly compared to the other two coefficients. However, we do not set it to
zero as we did before for quickly rotating coefficients, but use a more accurate approximation
this time. We calculate the integral in Eq. (12) approximately by replacing c0,1 with their
values at time t. We therefore find ce(t) = (Ω0c0(t) + Ω1c1(t))/2∆R. Substituting this result
into the equations for c0(t) and c1(t) we obtain a closed set of equations and have reduced the
dynamics of the three level system to a two level system with Hamiltonian Hred where now
∆ = δ + (Ω2

0 − Ω2
1)/4∆R and Ω = Ω0Ω1/4∆R. This reduced Hamiltonian causes transitions

between two states |0〉 and |1〉 as before. However, there are a few points worth noting here:

• The transfer of population between two different metastable ground state levels by two
classical laser fields is called Raman transition and π/2 or π pulses performed in this way
are Raman pulses.

• Both states |0〉 and |1〉 are from the ground state manifold, so there is no spontaneous
decay from these levels and therefore quantum information can be stored more reliably in
these states.

• The population in state |e〉 remains small at all times and (for Ω0 ≈ Ω1) is approximately
given by (Ω/∆R). From atomic physics we know that the probability ps(dt) of a sponta-
neous decay of the atom during a small time dt is given by ps(dt) = AdtΩ/∆R with A the
Einstein A-coefficient. During a gate time with dt = π/Ω the probability ps(dt) = Aπ/∆R

can be kept small when choosing sufficiently large values of ∆R.

• The energy difference between the states |0〉 and |1〉 is much smaller than in the case of
an optical transition between the states |0〉 and |1〉. It is thus easier to follow the phase of
the rotating basis state in the case of a Raman transition.

• Due to the requirement ∆R � Ω1,Ω2 the resulting Rabi frequency Ω will usually be
smaller than for directly driven transitions.
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4 Rabi flopping as quantum gates

The time evolution due to Hred is often called Rabi flopping. We now show how some of the
basic quantum gate operations can be implemented by this Hamiltonian if the two states |0〉
and |1〉 are considered a qubit.

4.1 Resonant case ∆ = 0

4.1.1 Rabi flopping

We look at the time evolution of the system for real values of Ω and find the time evolution
operator U(t) (see the previous lectures on QIP)

U(t) = e−iHredt =
(

cos(Ωt/2) −i sin(Ωt/2)
−i sin(Ωt/2) cos(Ωt/2)

)
. (13)

Initially all the population of the system is in the state |0〉 and the wave function then evolves
according to

|Ψ(t)〉 = cos(Ωt/2) |0〉 − i sin(Ωt/2) |1〉 . (14)

This yields oscillations in the populations of the two atomic states pn(t) = | 〈n| Ψ(t)〉 |2 with a
frequency of Ω the Rabi frequency.

p0(t) = (cos(Ωt/2))2 =
1
2

(1 + cos(Ωt))

p1(t) = 1− (cos(Ωt/2))2 =
1
2

(1− cos(Ωt)) . (15)

This process is called Rabi flopping and by choosing different evolution times we can use it to
implement the following basic quantum gates.

4.1.2 SQUARE ROOT OF NOT gate

We assume Ω to be real and write the Hamiltonian in spin notation where it is given by Hred =
Ωσx/2. Applied for a time t with Ωt = π/2 the induced time evolution is given by

e−iHredt = e−iπ/2σx/2 =
1√
2

(
1 −i
−i 1

)
(16)

which is the SQUARE ROOT OF NOT gate (often also called a π/2 pulse). Applying this
Hamiltonian for a time t with Ωt = π yields a NOT gate (the global phase does not matter)
with the propagator

e−iHredt = e−iπσx/2 = −i
(

0 1
1 0

)
(17)

in quantum optics also called π pulse.

4.1.3 Hadamard gate

If we assume Ω to be imaginary and apply Hred for a time t with Ωt = π/2 we find the time
evolution to be given by

e−iHredt = e−iπ/2σy/2 =
1√
2

(
1 1
1 −1

)
(18)

thus implementing a Hadamard gate.
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4.2 Off resonant case ∆ 6= 0

4.2.1 Rabi flopping

We again calculate the time evolution operator U(t), define s =
√

∆2 + Ω2/2 and find

U(t) = e−iHredt/ = ei∆t/2

(
cos(st)− i∆ sin(st)/2s −iΩ sin(st)/2s

−iΩ sin(st)/2s cos(st) + i∆ sin(st)/2s

)
. (19)

The populations for an atom initially in state |0〉 evolve in time according to

p0(t) = cos(st)2 +
∆2 sin(st)2

4s2

p1(t) =
Ω2 sin(st)2

4s2
. (20)

In this case the populations oscillate with a frequency of 2s and the amplitude of the oscillations
is given by Ω2/8s2. The time averaged population in the excited state is also given by p̄1 =
Ω2/8s2 = 1/2(∆2/Ω2 + 1), i.e. for ∆ � Ω this is approximately p̄1 ≈ Ω2/2∆2. This result gives
the criterion for when the effect of a classical laser beam on an atomic transitions will be small
and can be neglected (i.e. when the rotating wave approximation can be used).

4.2.2 Phase gate S

If in the above expression Eq. (19) we choose s = ∆/2 (i.e. Ω = 0) and let the system evolve for
a time t with ∆t = π/2 we find

U(π/2∆) =
(

1 0
0 i

)
= S (21)

and thus applying no laser pulse implements a phase gate.2

5 Trapping atoms in light fields

So far we have assumed that the atoms are trapped at a fixed position and that the wave function
is localized to a region much smaller than the wave length of the laser light (Lamb-Dicke regime).
There are several ways of trapping atoms, like e.g. ion traps and magnetic traps. Here we want
to briefly consider how optical trapping can be achieved. We consider an atom interacting with
a classical laser light which is far detuned ∆ � Ω. As above we adiabatically eliminate the
excited state and find a resulting Hamiltonian for the ground state level (including the motional
part with momentum operator p̂) given by

H =
p̂2

2m
− Ω2

4∆
(22)

where m is the mass of the atoms and the spatial dependence of the Rabi frequency Ω is
determined by the spatial dependence of the electric field. For a standing wave with wave
number k it is given by Ω(x) = Ω̄ sin(2kx). In this case the resulting potential corresponds to
an optical lattice which can be used to store arrays of atoms. Around the potential minima
the potential is given by 2Ω̄k2x2 corresponding to a harmonic oscillator potential with trapping
frequency ν2 = 4Ω̄k2/m.

2This is since we have chosen a frame rotating with the laser frequency ω (or detuning in the case of Raman
transitions) and not the atomic transition frequency, i.e. the relative phase is measured with respect to the phase
ωt and not to (ω1 − ω0)t.
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6 Nuclear magnetic resonance (NMR)

We look at atoms/molecules in a homogeneous time dependent magnetic field B(t). The coupling
between atom and magnetic field yields an interaction Hamiltonian Hint = −µ̂B ·B where µ̂B is
the magnetic dipole moment operator for the atom. Like above, in the case of a laser coupling
to an atom, we assume that by choosing the frequency ω of the magnetic field and the states of
the atom appropriately we reduce the dynamics of the system to a two level atom. In particular
we use a magnetic field of the form B = {B⊥ cos(ωt), B⊥ sin(ωt), B0}. This magnetic field leads
to an interaction Hamiltonian for the two states under consideration in the rotating frame Hred

where the detuning is given by ∆ = ω0 − ω with ω0 the splitting of the two levels |0〉 and |1〉 in
the magnetic field B0. The Rabi frequency Ω is proportional to the magnetic field B⊥.

• The atomic states involved can both be in the ground state manifold and are therefore
metastable. No excited state is involved in the transition between the two states and no
optical spontaneous emission will take place.

• These Rabi transitions can be performed with a spatially homogeneous magnetic field and
no trapping of the atoms is necessary.

• A large number of atoms/molecules can be used at the same time to enhance the signal
(magnetization) of the system

• Manipulating atomic hyperfine states with magnetic fields is technically easier than quan-
tum optical setups using lasers.

• If the atoms are not trapped there is less control and it is not yet known how NMR systems
can be scaled to large numbers of qubits.

6.1 Relaxation times

6.1.1 Spin-lattice relaxation time T1

The time T1 is the time constant at which the energy of the state |1〉 (whose energy is shifted by
the magnetic field) relaxes. In solid state systems this relaxation is due to interactions between
the spin and the lattice of the solid body (thus the name).

6.1.2 Spin-Spin relaxation time T2

This time T2 is the time at which the phase of the spin (i.e. the relative phase in a superposition
of |0〉 and |1〉 dephases or relaxes. This relaxation is often due to spin-spin interaction. In solid
state systems we usually have T2 � T1 and in fluids T2 ≈ T1.

6.2 Spin echo

In a perfectly homogeneous magnetic field all spins of an ensembles of atoms oscillate at the
same frequency. If the magnetic field is not perfectly homogeneous then the spins oscillate at
different frequencies and dephase. The effect of this dephasing can be avoided by the so called
spin echo method. Without applied Rabi frequency Ω ∝ B⊥ = 0 the state |1〉 of atom j rotates
at a frequency ω0j which is proportional to the local magnetic field at the position at this atom.
Since they are all slightly different from each other the resulting magnetization will dephase.
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If a π pulse is applied after a certain time τ the dephasing can be undone. Let us consider a
special example for the initial state |ψ〉

|ψ(0)〉j = |0〉j + eiφ |1〉j (23)

in each atom. This state evolves according to

|ψ(t)〉j = |0〉j + eiφ−iω0jt |1〉j (24)

and dephases due to different ω0j . If a π pulse is applied after time t = τ the state becomes

|ψ(t)〉j = |1〉j + eiφ−iω0jτ |0〉j (25)

and the subsequent evolution yields a state at time t = 2τ

|ψ(t)〉j = e−iω0jτ |1〉j + eiφ−iω0jτ |0〉j (26)

which, after another π pulse, up to a global phase, is identical to the initial state.

7 Building a quantum computer

Up to now we have only considered the basic building blocks of a quantum computer, the
qubits, and investigated how to perform quantum operations on them. When building a quantum
computer these are the first important steps. However, to successfully build a quantum computer
one also has to implement the following:

• Quantum operations which entangle two qubits: e.g. a CNOT gate. A CNOT gate has
the following truth table

|0〉 |0〉 → |0〉 |0〉
|0〉 |1〉 → |0〉 |1〉
|1〉 |0〉 → |1〉 |1〉
|1〉 |1〉 → |1〉 |0〉

(27)

i.e. the second qubit is inverted if the first one is in state |1〉 and otherwise remains un-
changed. Quantum gates like this require some kind of controlled interactions between the
two qubits. For ions one can use the Coulomb interaction, for neutral atoms s-wave in-
teractions or dipole-dipole interactions between the atoms. In NMR spin-spin interactions
within one molecule may be employed for implementing two qubit gates. Any unitary time
evolution on a set of qubits can be decomposed into a set of single-qubit gates and the
CNOT gate. In addition the decoherence time of the system has to be much larger than
any of the gate times.

• State preparation: i.e. a method to initialize the state of the qubits to a certain state
usually |0〉.

• State readout: After the computation is performed one has to be able to read out the
result. This corresponds to performing measurements on single qubits of the quantum
register.

8



• Scalability: The system performing quantum computations should be scalable, i.e. it should
be known how to increase the number of qubits once gate operations between a small
number of qubits are possible.

• Transmission of quantum information: In addition to the above criteria one also has
to devise a scheme that allows to reliably transfer quantum information from a steady
qubit (e.g. an atom) to flying qubits as for instance photons which may store quantum
information in their polarization and can be transmitted faithfully.

A Problems

1. Calculate the dipole matrix elements for the hydrogen atom µkl for circular and linearly
polarized light, where k, l labels the states of the atom. Find the selection rules for dipole
allowed transitions.

2. For a 87Rb atom estimate the required Rabi frequency for creating an optical lattice with
a ground state size smaller than 15% of the laser wave length and a probability of 1% of
spontaneously emitting a photon within a trapping time of 1s.

3. Consider the energy level structure of the hydrogen like atom 87Rb:

• Choose two hyperfine levels of the ground state manifold that can be used by represent
a qubit. Which laser polarizations could be used to implement single qubit gates via
Raman transitions? Assuming a maximum optical Rabi frequency of Ω0 = Ω1 =
100MHz find the gate time for a π pulse if the error probability due to spontaneous
emission is to be smaller than 1%.

• Now consider the same ground state manifold and a qubit where gate operations can
be done via magnetic fields. Choose magnetic field parameters with B0 � B⊥ and
a maximum magnetic field of B0 = 3T , B⊥ = B0/100. How fast can a π pulse be
performed in this case?

87Rb: Hydrogen like atom with ground state manifold 5S1/2, nuclear spin I = 3/2, mass
m = 1.44× 10−25kg. The ground state hyperfine splitting is ωHF = 6.8GHz between total spin
states F = 2 and F = 1. Transition lines: D1 line λ1 = 794.8nm (5S1/2 ↔ 5P1/2) and D2 line
λ2 = 780nm (5S1/2 ↔ 5P3/2). Life time of the 5P states due to spontaneous emission τ ≈ 27ns.

9


