
Chapter 8

Exercises

8.1 Single qubits

1. Show that if |ψ〉 = cos(θ/2)|0〉+ sin(θ/2)eiφ|1〉 then

|ψ〉〈ψ| = 1

2
(σ0 + sx σx + sy σy + sz σz)

where σα are the usual Pauli matrices, with α equal to x, y, z or 0. Show that
s = (sx, sy, sz) (the Bloch vector) has unit length, and so |ψ〉〈ψ| can be represented by
a point on the unit sphere (Bloch sphere). Show that any mixed state of a single qubit
can be written as a point in the Bloch sphere. What point does 1

2
σ0 correspond to?

2. Show that σ2
α = σ0, and hence use a series expansion to show that exp(−iθ σα/2) =

cos(θ/2)σ0 − i sin(θ/2)σα without diagonalizing any matrices.

3. Using matrix propagators show that the Hadamard gate can be implemented as 90y180x
(where rotations are written from left to right; note that propagators must be ap-
plied from right to left). Show that other possible implementations include 180x90−y,
90−y180z and 180z90y.

4. Spin echoes. Show that φz 180x φz ≡ 180x and thus show that φz 180x 2φz 180x φz is
equivalent to the identity. Similarly show that φz 180x φz 180x and 180x φz 180x φz are
also equivalent to the identity. What about 180y φz 180y φz? What about 180x φz 180y φz?
Try to avoid just multiplying matrices mindlessly, but instead reuse partial results and
use known properties of propagators where possible.

5. We have used matrices to show that HσzH = σx; now show that HσxH = σz without
multiplying matrices.

6. Another way to do this is to note that H is equal to (σx + σz)/
√
2; use this and the

known properties of products of Pauli matrices to prove that HσzH = σx.

7. This approach allows some quite complex calculations; to keep life simple it is often
better to write X for σx etc. Use this approach to show that the product of operators
90−y90x90y is equivalent to 90z. Recall that XY = iZ.
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8.2 Physical Systems

1. The Innsbruck ion trap quantum computer is based on the electric dipole forbidden
transition between the D5/2 excited state and the S1/2 ground state of

40Ca+ ions (40Ca
has nuclear spin I = 0, and so there is no hyperfine structure to worry about; this
transition is weakly allowed by coupling to the atom’s electric quadrupole moment,
and has a natural lifetime of about 1 s). This transition can be driven directly at a
wavelength of 729 nm. Calculate the limiting spatial resolution in this system (you
may assume the Abbe limit), and comment on the expected excited state population
at 300K.

2. In an experiment to observe Rabi oscillations in this system, the population of the
D5/2 state was found to increase, then decrease, then increase again, with a minimum
observed after about 1µs. Since this is a quadrupole transition, we can’t really analyze
it using the methods in this book, but let’s ignore that. Suppose an electric dipole
transition was driven at the same rate: make a reasonable estimate of the electric field
strength required. For the strength of the dipole moment you may take z ∼ a0.

3. Now calculate the spontaneous decay time of a strongly allowed transition at the same
wavelength, which is given by 1/Γ = (3πǫ0~c

3)/(ω3e2z2), and comment on the result.

4. Suppose we tried to excite this transition by brute force, using a very large jump in
a static electric field. Estimate the field strength required to make this work, and
comment on your result.

5. A typical modern NMR spectrometer has a main magnetic field strength of about 12T,
resulting in a 1H Larmor frequency of about 500MHz, while an RF pulse causing a
90◦ rotation will typically last around 6µs. Calculate the strength of the oscillating

magnetic field component of the RF field.

6. Calculate the energy gap between the two spin states of a 1H in the system discussed
above. Assuming a Boltzmann distribution between the two energy states, what are
the probabilities of finding a given nucleus in the two states at a temperature of 300K?
Suppose an NMR sample contains 0.2ml of water at 300K: what is the excess number
of spins in the lower energy state? What temperature is required to place 99% of the
spins in the lower energy state?

7. As implied above, a typical NMR sample is a moderately large object (several mm in
each direction), containing many identical copies of the same spin. If the magnetic
field is different at each spin then the Larmor frequency will also vary, giving rise to
inhomogeneous broadening. Suppose the natural NMR linewidth is around 1Hz, which
is reasonable: how much variation in the field can we tolerate? Is this practical?

8. In section 5.3 we explored some of the properties of birefringent wave plates, with
a particular emphasis on quarter wave plates (φ = π/2). Now evaluate the unitary
transformation performed by a half wave plate, and show how this can be used to
implement not gates and Hadamard gates directly.
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9. Suppose I make a beam of vertically polarized light, and pass it through an ideal piece
of polaroid film with a vertical axis. The light beam will be completely transmitted.
Now suppose I put a second polarizer after the first one, at an angle θ; the transmitted
fraction will drop to cos2 θ, with no transmission occurring at 90◦ (the Law of Malus).
Now suppose I use two ideal polarizers after the first one, at angles of 45◦ and 90◦:
what will be the transmitted fraction in this case? Now suppose I use a sequence of n
polarizers, equally spaced up to 90◦ (so that for the case n = 3 the first polarizer is at
0◦ and the next three are at 30◦, 60◦ and 90◦ respectively). What is the transmission
for general values of n? How about n = 90? What is the value in the limit n→∞?

8.3 Two qubits

1. Show that a controlled-not gate can be built out of Hadamard gates and a controlled-σz
gate without using explicit matrices in your argument.

2. Use the “bitwise addition modulo 2” description of the controlled-not gate to show
that a network of three controlled-not gates will swap the values of two qubits in
eigenstates. Hence show that this network acts as a swap get for any separable state
of two qubits.

3. Calculate an explicit matrix form for the swap gate. What does this gate do to a pair
of qubits in a Bell state? Why is this answer not surprising?

4. The Ising Hamiltonian, which plays a key role in many proposed implementations of
quantum computing, takes the form H = (2πν/2) σz ⊗ σz . Show that a combination of
a period of evolution under the Ising Hamiltonian for a time t = 1/(4ν) and a bilateral
90−z rotation is equivalent to the controlled-σz gate (ignoring global phases).

5. Suppose Alice and Bob share an entangled pair of qubits in the state ψ−. Find local
operations that Bob can use to convert this to the other three Bell states.

6. It can be shown that any single qubit gate can be constructed out of a suitable network
of Hadamard gates and T =

√
S = 4

√
Z gates. Use this fact to prove that the singlet

state ψ− is unaffected by any bilateral unitary operation.

7. A pure state is said to be separable (and therefore not entangled) if it can be written
as a direct product of single qubit states; a mixed state is said to be separable (and
therefore not entangled) if it can be written as a mixture of separable pure states. Now
suppose that Alice and Bob start with a pair of qubits in the separable state |0〉|0〉, and
that they try to create an entangled state by LOCC. Inspired by the standard network,
Alice applies a Hadamard to her qubit and then measures it; if she gets a |0〉 she does
nothing, but if she gets a |1〉 she tells Bob to apply a not gate to his qubit. Find the
resulting state, and show that it is not entangled. What is the state fidelity between
the resulting state and each of the four Bell states? Can you describe the resulting
state as a mixture of Bell states?


