
Optics Lectures

1 Lecture 1: The wave equation and diffraction

1.1 The wave equation

We know that optics is about waves (or at least the bit that isn’t about parti-
cles!). Wave optics was invented by Huygens, but formalized by Maxwell. These
are Maxwell’s equations:

∇.E = ρ, (1)

∇×E = −∂tB (2)

∇.B = 0, (3)

∇×B = µ0J + ε0µ0∂tE. (4)

Here ρ is the charge density and J is the current density. E and B are
the electric and magnetic fields. Optical waves are hidden somewhere here. We
consider fields in empty space, so we set ρ = J = 0. Differentiate (4) with
respect to time, and then substitute (2) into it:

∇×∂tB = ε0µ0∂
2
tE,

⇒ −∇×∇×E = ε0µ0∂
2
tE.

This is some kind of differential equation for the electric field. We can decode
it using the vector calculus identity

∇×∇×F = ∇ (∇.F )−∇2F ,

for any vector field F . Let us define the constant c via the relation c2 = 1/(ε0µ0).
Finally, (1) tells us that the electric field in vacuo is divergence free. Putting
all this together yields the wave equation[

∇2 − 1

c2
∂2
t

]
E = 0, (5)

where c turns out to be the speed of light. The above is actually a pretty weird
result. The speed of light is just a combination of constants quantifying the
strength of the electromagnetic interaction. The full appreciation of the weird-
ness of Maxwell’s equations ultimately led Einstein to the theory of relativity,
which takes the constancy of c, independent of sources or their motion, as a fun-
damental postulate. This is a wave equation, which admits sinusoidally varying
solutions, like

E(r, t) = E0e
i(k.r−ωt), (6)

where E0 is some constant vector, k is called the wavevector, and ω is the
angular frequency (or just the frequency).
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1.2 Fourier Transform

The linearity of the wave equation means that a general solution to the wave
equation can be constructed from sums of exponentials as in (6). For this reason
the Fourier transform is critical to the analysis of optical signals. The Fourier
transform pair is defined as follows,

S(t) =
1√
2π

∫ ∞
−∞

S̃(ω)eiωt dω, (7)

and

S̃(ω) =
1√
2π

∫ ∞
−∞

S(t)e−iωt dt. (8)

If the coordinate t is a temporal coordinate, then The Fourier transform S̃(ω)
of the signal S(t) is called the spectrum of the signal, and the coordinate ω is a
frequency (an angular frequency). The symmetry of the above relations means
that the spectrum is ‘just as good’ as the temporal signal as a representation of
the signal. It’s good to become comfortable with switching between these two
complementary viewpoints of the same signal.

The properties of Fourier transforms are well-documented and familiarity
with manipulating transforms is extremely useful in nearly all optical problems.

1.3 Green’s function

We derived the wave equation for the electric field in vacuo,[
∇2 − 1

c2
∂2
t

]
E = 0. (9)

This equation can be used to compute the way light diffracts from an aperture,
which is of fundamental importance in optics and imaging science, with obvious
applications in acoustics, medical diagnostics, astronomy, radar sensing etc...
To proceed, we first simplify the calculation by neglecting the vector character
of the electric field: we consider the evolution of just a single component, whose
magnitude we denote by the scalar function E. We also remove the time depen-
dence by substituting the following ansatz, corresponding to a monochromatic
field with frequency ω, into (9):

E(r, t) = E(r)eiωt.

This yields the Helmholtz equation[
∇2 + k2

]
E = 0, (10)

where k = ω/c is the (magnitude of the) wavevector of the field. We know
plane waves can be used to build up a solution, but we are interested in the
Green’s function for this equation. The Green’s function G(r) associated with
a differential equation is defined as follows,

LrG(r) = δ(r),

2



where δ(r) is the three dimensional Dirac delta function, and where Lr rep-
resents the differential operator describing the particular differential equation
we are concerned with. Green’s functions are very useful for constructing the
solutions to boundary value problems of the form Lrψ(r) = U(r), since we can
write ψ(r) =

∫
G(r − r′)U(r′) dr′. For the Helmholtz equation, we have[

∇2 + k2
]
G(r) = δ(r). (11)

To find G, we Fourier transform both sides from r −→ q, which gives(
k2 − q2

)
G̃(q) =

1

(2π)3
.

Solving for G̃ and Fourier transforming back, we get

G(r) =
1

(2π)3

∫
eir.q

k2 − q2
dq

=
1

(2π)3

∫ ∞
0

∫ 1

−1

∫ 2π

0

eirq cos θq2

k2 − q2
dqd(cos θ)dφ

=
2π

(2π)3

∫ ∞
0

(
eirq

irq
− e−irq

irq

)
q2

k2 − q2
dq

=
1

2ir(2π)2

{∫ ∞
−∞

qeirq

(k − q)(k + q)
dq −

∫ ∞
−∞

qe−irq

(k − q)(k + q)
dq

}
,(12)

where in the last line we extended the integral over q to the range −∞ −→∞,
and divided the result by 2. These integrals can be done via contour integration.
First, we apply a small ‘regularization’, meaning that we shift the singularities
in the integrands off the real line by making the transformation k −→ k + iε,
where ε is a small real number. For example, the integral

I =

∫ ∞
−∞

qeirq

(k + iε− q)(k + iε+ q)
dq

can be closed in the upper half of the complex plane. Using the residue theorem,
we then get

I = 2πi
(k + iε)eir(k+iε)

k + iε+ k + iε
,

which becomes
I = iπeirk, (13)

when we take the limit ε −→ 0. For a given choice of regularization (choosing
ε > 0), each integral in (12) above contains one pole, and so each integral
contributes a result like (13). The Green’s function then works out to be

G(r) =
1

4π

eik|r|

|r|
.
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This describes spherical waves expanding out from the origin. This is consistent
with the solution we expect for a wave equation with an impulse (i.e. a delta
function) as a source term: G describes the ripples on a pond after a pebble is
thrown in. In the next section, we will use its properties to study diffraction
from an aperture.

1.4 Kirchhoff diffraction

Consider the quantity
χ = φ∇ψ − ψ∇φ,

defined for arbitrary functions φ and ψ. The divergence of this quantity is given
by

∇.χ = ∇φ.∇ψ + φ∇2ψ −∇ψ.∇φ− ψ∇2φ

= φ∇2ψ − ψ∇2φ.

Integrating over some volume, and applying the divergence theorem, we get∫
∇.χdr =

∫
χ.dS,

where the latter integral runs over the surface bounding the volume. Substi-
tuting ψ −→ E(r) and φ −→ G(r −R), where R is some point of interest, we
get∫

[E(r)∇G(r −R)−G(r −R)∇E(r)] .dS =

∫ [
E(r)∇2G(r −R)−G(r −R)∇2E(r)

]
dr

=

∫ {
E(r)

[
δ(r −R)− k2G(r −R)

]
+k2G(r −R)E(r)

}
dr

= E(R),

where in the second step we used the fact that E and G satisfy the wave equa-
tions (10) and (11). This relationship gives us a prescription for finding the field
E at some point R from the field and its derivatives on some surface enclosing
R. We now consider the case that this surface is a large hemisphere, with infi-
nite radius, centred on a diffracting aperture surrounded by an opaque screen.
We neglect contributions to the surface integral from the curved portion, since
this is infinitely far away, and from the opaque screen. The only contribution to
the surface integral is then from the transparent portion of the aperture itself.
We take the normal to this plane aperture to point along the z axis, and so we
obtain

E(R) =

∫
aperture

[E(r)∂zG(r −R)−G(r −R)∂zE(r)] dS.

Differentiating the Green’s function, we get

∂zG(r −R) = −
(

ik − 1

|r −R|

)
G(r −R) cos θ

≈ −ikG(r −R) cos θ,
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where θ is the angle between the vector R−r and the positive z axis, and where
in the last step we assumed that k � 1/|r−R| (i.e. that the distance from the
aperture to R is much larger than an optical wavelength). Finally, we assume
that the field illuminating the aperture is composed of plane waves travelling
along the positive z axis,

E(r) = Ein(x, y)eikz.

Differentiating this, we end up with the Kirchhoff diffraction integral

E(R) = − ik

4π

∫
aperture

eik|r−R|

|r −R|
Ein(x, y) (cos θ + 1) dS.

The factor (cos θ + 1) is known as the obliquity factor. Let us write R =
(X,Y, Z), and let us denote the diffracted field in the plane at z = Z by
E(R) = E(X,Y, Z) = Ediff(X,Y ). Generally we will be concerned with small-
angle diffraction for which Z � (X,Y ), and cos θ = Z/

√
Z2 +X2 + Y 2 ≈ 1.

Then we can write the diffraction integral in the form

Ediff(X,Y ) = − ik

2πZ

∫
aperture

eik
√

(x−X)2+(y−Y )2+Z2
Ein(x, y) dS.

1.5 Fresnel and Fraunhofer diffraction

The square root in the exponent of the integrand in Kirchhoff’s integral —
thanks to Pythagoras — is inconvenient, and rather obfuscates the features of
diffraction. Since Z is generally large compared to the aperture size, and to the
transverse size of the region over which we would like to compute the diffracted
field, we can expand the square root using a Taylor series,√

(x−X)2 + (y − Y )2 + Z2 ≈ Z +
(x−X)2 + (y − Y )2

2Z

= Z +
X2 + Y 2

2Z
+
x2 + y2

2Z
− X

Z
x− Y

Z
y.

For simplicity, lets proceed with a one dimensional treatment, and drop the y
coordinates (its easy to put them back in at any time). Then we can write

Ediff(X) = − ikeikZeikϕ(X)

2πZ

∫
aperture

eikϕ(x)e−i(kX/Z)xEin(x) dx,

where ϕ(x) = x2/2Z is a transverse phase factor that is quadratic in x. This is
known as the Fresnel diffraction kernel. Clearly it is nicer than the square-root
business above, but it is not easy to work with. Fortunately, there are many
situations in which the kernel can be simplified even further. The most obvious
is just the case where the quadratic phase ϕ(x) in the integrand is so small
that it can be neglected. If ϕ is small, we can expand the exponential in the
integrand above as

eikϕ(x) ≈ 1 + ikϕ(x) + ....
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To ignore the contribution of ϕ to the diffraction kernel, we simply require
that kϕ(x) � 1 for all values of x appearing in the integral. If the aperture
has a size a, this gives the condition kϕ(a) � 1. Sometimes the quantity
F = kϕ(a) = πa2/λZ is known as the Fresnel number. Setting F � 1 gives

⇒ Z � πa2

λ
. (14)

So if we look far enough away — in what we term the far field — we can neglect
the quadratic contributions to the diffraction kernel. With this simplification,
the diffracted field is closely related to the Fourier transform of the field in the
plane of the aperture. To see this, note that we can convert the integral over
the aperture to an integral over the entire plane containing the aperture, as long
as we require that the field Ein(x, y) is zero outside the aperture. With this in
mind, we can write the diffraction kernel as

Ediff(X) = − ikeikZeikϕ(X)

2πZ

∫
e−i(kX/Z)xEin(x) dx

= − ieikZeikϕ(X)

√
2π

× k

Z
Ẽin

(
k

Z
X

)
.

This is known as the Fraunhofer diffraction kernel. It is approximately cor-
rect in the limit that the distance between the diffracting aperture and plane
of observation is large. Perhaps you recall that Fraunhofer diffraction from a
rectangular slit produces a sinc2 intensity distribution (found by Fourier trans-
forming the ‘rect’ function). The first zero of this distribution appears at an
angle of θ = λ/a, and this angle serves as a good characterization for the angle
subtended by light diffracting from a general aperture of size a in the Fraunhofer
limit. Note that the Fresnel number can be expressed (neglecting a factor of π)
as

F ∼ a

θZ
.

That is, the Fresnel number is roughly the width of the aperture over the size
of the diffraction pattern. Fraunhofer diffraction is therefore valid in the limit
F � 1 that the aperture is much smaller than the size of its diffraction pattern.

2 Lecture 2: Lenses and interference

2.1 Lenses

We make a lens using a lump of transparent material with a refractive index
different from that of air. One way to understand the action of a lens is to
trace the paths of rays refracted at its two surfaces and show how diverging
rays striking one surface of the lens are brought together to form an image
downstream from the lens. A more powerful way to think about lenses is as
phase shifters. For a sufficiently thin lens, the transverse phase shift added by
the presence of a lens is

φ(x) = k(n− 1)t(x),
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where t(x) is the thickness of the lens at transverse coordinate x, and where n
is the refractive index of the lens material. For a spherical plano-convex lens
with radius of curvature R and maximum thickness T , the thickness a distance
x away from centre is given by

t(x) = T − (R−R cos θ) , where sin θ =
x

R

≈ T − x2

2R
.

The constant T has no important effects, so we neglect it in what follows.
Suppose we have a point source emitting spherical waves a distance u from the
face of the lens. The spherical wavefronts striking the lens have the transverse
phase

φu(x) = k
√
u2 + x2

≈ ku+
kx2

2u
.

After the lens, then, and neglecting the constant phases, we have the phase

φu(x) + φ(x) =
k

2

(
1

u
− n− 1

2R

)
x2.

But this phase is just equal to the phase fronts associated with a spherical wave
converging on a point a distance v downstream from the lens, where

1

u
+

1

v
=
n− 1

R
.

This is readily identified with the lens-maker’s formula by defining the focal
length f = R/(n− 1).

Question: Can you think of a way to make a lens, composed of two glass
plates, such that the focal length can be adjusted by sliding the plates over along
the x-axis? Suppose one plate has thickness t(x, y), and other has thickness
T − t(x, y). Now one is moved x −→ x−δ and other other is moved x −→ x+δ.
What form should the function t(x, y) have such that the phase imparted by
propagation through the pair is quadratic?

Now, since a lens imparts a negative quadratic transverse phase, we can
construct another situation in which Fraunhofer diffraction applies. When a
lens cancels the Fresnel phase ϕ(x) in the diffraction kernel. Placing a lens
immediately behind the diffracting aperture (or indeed, one can consider the
lens itself — with its finite size — as an aperture), we see that ϕ(x) is cancelled
exactly if

φ(x) + ϕ(x) = 0,

⇒ f = Z.
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That is, Fraunhofer diffraction describes the diffraction pertaining to the image
plane of any optical instrument. It is this property that makes Fraunhofer so
important.

Now, we showed the diffracted field is related to the Fourier transform of
the incident field in the Fraunhofer limit, but it is not quite equal to the Fourier
transform, because of the transverse quadratic phase ϕ(X). To remove even
this phase factor, the lens can be moved from immediately after the aperture,
to halfway between the aperture and the observation plane. If the focal length
of the lens is now equal to Z/2, then the diffraction pattern is exactly (at least
up to quadratic terms in the phase) given by a scaled Fourier transform of the
field transmitted through the aperture. This is not that difficult to show, but
two diffraction integrals are required:

Ediff ∝
∫ ∫

eikψ(X,ξ,x) dξ Ein(x) dx,

where

ψ(X, ξ, x) =
X2 + ξ2 + x2

Z
− 2

X + x

Z
ξ.

where ξ is the transverse coordinate in the plane of the lens, and where we have
neglected multiplicative constants and phases that are independent of any trans-
verse coordinates. Performing the integral over ξ (by ‘completing the square’
on ψ and applying the formula for a Gaussian integral), yields,

Ediff(X) ∝ Ẽin

(
2kX

Z

)
.

That is, the diffracted field is truly a Fourier transform of the incident field.

2.2 Interference

Generally, in optics, we deal with electric fields that are varying quickly —
typically at THz frequencies — so that it is not possible to directly measure
the electric field amplitude E: no electronic detector is fast enough. Instead,
we use detectors that measure the energy in the field, like power meters or
photodiodes, CCDs, or indeed the human eye. The quantity we have access to
is then the intensity I = |E|2. Given such detectors, how do we surmise that
light propagates as waves? The key feature is interference, which can be broadly
characterized as the modulation of an intensity distribution arising when two
light sources are combined. But interference is not always apparent. We do not
see interference fringes in daylight or lamp light, but we certainly do if we use
lasers. Clearly there are differences between these light sources, but without
delving into the physics of them, it is useful to define a property associated
with each source — coherence — that describes the quality of the interference
fringes one can produce using it. This is a very operational definition, but we
will see that it is straightforward to turn this into a mathematical quantity with
simple properties. We will see that coherence is degraded by non-uniformity of
the interfering fields, and also by statistical fluctuations.
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In any interference, at least two fields are combined, with some relative phase
whose variation produces intensity modulations. For simplicity, let us consider
just a single polarization component of the electric field (so we can treat all
fields as scalar quantities). Then we are concerned with a field of the form

E = E1 + E2,

where E1 and E2 are complex numbers representing the two interfering fields.
The intensity is found by squaring E,

I = |E|2

= |E1|2 + |E2|2 + E1E
∗
2 + E2E

∗
1

= I1 + I2 + 2<{E1E
∗
2} .

The first two terms are what one would expect if light were described by a
‘corpuscular’ theory: we just add intensities to get the total. But the last term
does not have to be positive, depending on the relative phase between E1 and
E2 it can be either positive or negative. Therefore as the relative phase of E1

and E2 changes, the intensity I will be modulated. This is interference. It is
the characteristic feature of waves.

Now, since our detectors are slow, our measured signal will take the form of
a time average of the intensity,

〈I〉 =
1

T

∫ T/2

−T/2
I(t) dt,

where T is the response time of the detector. Applying this average to our
interference pattern gives

〈I〉 = 〈I1〉+ 〈I2〉+ 2<{〈E1E
∗
2 〉} .

Now, the average of the interference term is always smaller in magnitude than
the largest magnitude appearing in its un-averaged form. Therefore the in-
terference we see on our detector may be of reduced quality, depending on the
magnitude of 〈E1E

∗
2 〉. Let us define the coherence as the normalized interference

term

γ12 =
〈E1E

∗
2 〉√

〈I1〉〈I2〉
,

so that our interference signal can be written as

〈I〉 = 〈I1〉+ 〈I2〉+ 2
√
〈I1〉〈I2〉< {γ12} .

Now γ12 cannot have a magnitude larger than 1 (this follows from the Cauchy-
Schwarz inequality: think of the average as the scalar product of the two ‘wave-
functions’ E1 and E2; the result can be seen by analogy with the vector scalar
product, where |a.b| = |ab cos(θ)| ≤ ab). When |γ12| = 1, we say that the fields
E1 and E2 are coherent or perfectly coherent. If |γ12| = 0, we say that the fields
are incoherent. Clearly in the first case, interference is maximal, while in the
second case it is absent. If |γ12| takes an intermediate value, than we say the
fields are partially coherent with one another.
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2.3 Interferometers

In an interferometer, we generally combine two fields with a controllable relative
phase that we can vary to observe fringes. The maxima and minima of the
interference pattern will have intensities

〈I〉max = 〈I1〉+ 〈I2〉+ 2
√
〈I1〉〈I2〉|γ12|,

and 〈I〉min = 〈I1〉+ 〈I2〉 − 2
√
〈I1〉〈I2〉|γ12|.

The visibility of the interference is defined as

V =
Imax − Imin

Imax + Imin

=
2
√
〈I1〉〈I2〉

〈I1〉+ 〈I2〉
|γ12|.

And if we interfere two fields with equal average intensities 〈I1〉 = 〈I2〉, we have

V = |γ12|.

Therefore, the visibility of interference fringes observed on a slow detector gives
direct information about the coherence of the interfering fields. Perfect visibility,
with V = 1, occurs only when Imin = 0, so the presence of completely dark
fringes is a signature of perfect coherence.

2.4 Temporal coherence

Suppose that we build a Michelson interferometer. This splits a single incident
field into two parts; they travel different path lengths and are then recombined.
Therefore, in the language of the above discussion, we have E2 = E2(t) =
E1(t− τ). That is, the two interfering fields are just time-shifted copies of one
another. Now the coherence γ12 can be written simply as γ(τ),

γ(τ) =
〈E(t)E∗(t− τ)〉

〈|E|2〉
=

1

〈I〉T

∫ T/2

−T/2
E(t)E∗(t− τ) dt.

This coherence function is called the temporal coherence, and it describes the
coherence of a light beam with itself, at a later time. If we set the time shift
τ equal to zero (by balancing the arms of the interferometer), then clearly we
have γ(0) = 1. In general, there will be some finite timescale τc over which the
coherence remains roughly constant, so that γ(±τc) ≈ 1. This time is called the
coherence time of the field.

The temporal coherence is related to the spectrum of the light. To see how,
note that the temporal coherence has the form of a convolution of the field E
with the field E∗, as long as T is much larger than the timescales over which E
varies. Recall that the Fourier transform of a convolution is simply the product
of the Fourier transform of the individual fields. Therefore we have

Fτ {γ(τ)} (ω) ∝ Ẽ(ω)× Ẽ∗(ω) = I(ω).
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This is known as the Wiener-Kinchine theorem. It tells you that the visibility of
interference fringes produced by a Michelson interferometer is directly related
to the power spectrum of the light entering the interferometer, by a Fourier
transform. From our knowledge of Fourier transforms, it’s clear that the broader
the spectrum, the narrower the coherence function, so the coherence time τc
characterizing the temporal width of the coherence function is inversely related
to the spectral bandwidth.

2.5 Transverse coherence

Now suppose we build a Young’s slits apparatus. Here, a field illuminates two
spatially separated slits, and then the light emerging from each slit is recombined
on a screen. The angular position on the screen is related to the difference
in optical path lengths connecting points on the screen to the two slits, and
interference fringes are therefore observed across the screen. Now the two fields
are observed at the same time (or at least, at times separated by much less
than the coherence time of the field), but they are ‘picked’ from two different
points in space, in the plane transverse to the propagation direction. Now the
coherence function takes the form

γ(ξ) =
〈E(x)E∗(x− ξ)〉

〈|E|2〉
.

Now, suppose that both of these fields have propagated from a source far away.
Fraunhofer diffraction tells us that they can be related to the field Es in the
plane of the source by a Fourier transform,

E(x) ∝
∫
Es(y)eikxy/D dy.

The coherence function is then given by

γ(ξ) ∝
∫ ∫

〈Es(y)E∗s (y′)〉eikxy/De−ik(x−ξ)y′/D dydy′.

Now, suppose that the light fields coming from the source are completely inco-
herent. Then we have

〈Es(y)E∗s (y′)〉 = Es(y)E∗s (y)δ(y − y′) = Is(y)δ(y − y′).

That is, they show no correlation unless you’re looking at exactly the same point
on the source. Inserting the delta function, we get

γ(ξ) ∝
∫
I(y)eikξy/D dy.

That is, the visibility of interference fringes in a Young’s slit interferometer
is related to the transverse intensity distribution of an incoherent source by
a Fourier transform. This is known as the van Cittert-Zernike theorem. It
underlies the operation of stellar interferometry, where the transverse profiles of
stars can be found by observing the interference from two telescopes.
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3 Lecture 3: Ray Transfer matrices

The invention of the laser introduced an entirely new kind of optics, based on
the manipulation of coherent, collimated beams of light. Such beams behave
very much as thin pencils of light, and often a description in terms of rays
is appropriate. On the other hand, their coherence makes interference effects
arising from the wave nature of light particularly easy to observe. Fortunately
the results obtained for rays remain useful even when a wave description is used.

We will be concerned with paraxial optics, in which any ray (or wavefront)
propagates at a small angle θ � 1 to the optical axis (or z axis), such that
sin θ ≈ tan θ ≈ θ. Assuming cylindrical symmetry about the z axis, we can
specify a ray at any point z uniquely by its displacement x away from the z
axis, and its direction θ. Now consider the specification of the same ray at a
later position z+L. The change in its displacement over the distance L is given
by the relation

tan(θ) =
x′ − x
L

,

where x′ is the new displacement. Therefore, in the paraxial approximation, we
have

x′ = x+ Lθ.

Since the ray’s direction is unchanged, we have

θ′ = θ,

where θ′ is the new direction. Putting these results together gives the relation(
x′

θ′

)
=

(
1 L
0 1

)(
x
θ

)
.

The ray at both positions is described by a vector quantity, whose components
specify its displacement and its direction, and the connection between the two —
which is a linear transformation in the paraxial approximation — is represented
by a matrix known as a ray transfer matrix. In general, any optical component
that maintains paraxial propagation can be represented by some transfer matrix(

A B
C D

)
,

where A, B, C and D are real constants. These matrices are sometimes known
as “ABCD matrices”. What about a lens? If the lens is thin, the displacement
is not changed by propagation through the material of the lens, so x′ = x, but
the angles of rays either side of the lens are altered. To derive the relationship
between these angles, recall the lens maker’s formula

1

u
+

1

v
=

1

f
,
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where f is the focal length of the lens. We can then write

tan θ =
x

u
; tan(−θ′) =

x

v
,

where the minus sign in the second relation accounts for the fact that the ray
emerging from the lens is propagating towards the z axis. Invoking the paraxial
approximation gives

θ′ = θ − x

f
,

so that the ray transfer matrix for a lens is(
1 0
− 1
f 1

)
. (15)

It is also possible to derive transfer matrices for reflection and refraction at
curved and plane surfaces. Very complicated optical systems can be analyzed
easily in this formalism, simply by multiplying the transfer matrices for each
component (and for the free propagation between them) together to produced
a single, final matrix for the whole system. This is therefore a very powerful
technique!

In general, if the refractive indices of the initial and final medium are given
by ni and nf , the determinant AD−BC of the transfer matrix is equal to ni/nf ,
so that transfer matrices describe unitary transformations if ni = nf . It is easy
to check for the cases shown above that AD−BC = 1. In some formulations, the
refractive index of the medium is included with the direction θ in the description
of the ray, and then the transfer matrices are always unitary. For simplicity,
we’ll stick with the current formulation.

3.1 Spherical waves

Consider a point source, located on the z-axis. The wavefronts produced by
such a point source are spherical, and can be characterized by their radius of
curvature R. How are they transformed by a general optical system? Consider
the ray defined by the normal to the wavefronts. We have that R sin θ = x, and
therefore, in the paraxial approximation, R = x/θ. After the optical system, we
can calculate x′ and θ′ using the ray transfer matrix, and then the new radius
of curvature for the wavefronts is given by R′ = x′/θ′. Putting all this together
we get

R′ =
AR+B

CR+D
. (16)

This is known as a Möbius transformation. For the case of free space propaga-
tion, we have A = D = 1, B = L and C = 0, so that

R′ = R+ L. (17)

This result will be useful in analyzing the propagation of laser beams.
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3.2 Generalized diffraction integral

The ABCD matrices can be applied to the study of wave propagation in the
paraxial limit, as well as to the study of rays. This is why they are worth using!
To see how this works, recall the Fresnel-Kirchoff integral,

E(x′) =
ik

2π

∫
K(x′, x)E(x) dx, (18)

where the integral kernel K propagates the incident field to the outgoing field,
and takes the form

K(x′, x) =
eikl(x′,x)

l(x′, x)
, (19)

where l(x′, x) is the optical path length from x at the input to x′ at the output.
Is there a way to use the ABCD matrix to evaluate the path length l through
a general optical system? If there is, we can use these matrices to implement
diffractive propagation through very complicated optical systems in ‘one step’.
To see how to do this, note that the initial direction θ of a ray can be expressed
in terms of its initial and final displacements x and x′ using the relation x′ =
Ax+Bθ, which gives

θ =
x′ −Ax
B

. (20)

Similarly, for the final direction we have θ′ = Cx+Dθ = [(BC −AD)x+Dx′] /B.
Using the fact that the determinant is AD −BC = 1, we have

θ′ =
Dx′ − x

B
. (21)

Now, the centres of the spherical waves on either side of an optical system are
conjugate points: waves emerging from one centre are brought together at the
other, so they are images of each other. The optical path length of any ray
connecting two such points is the same (as required by Fermat’s principle).
Therefore the optical path along the optical axis is equal to the optical path
along an oblique incident ray, through the optical system, and then along the
emerging ray. Let the first distance be equal to Ddirect = R + L0 − R′, where
L0 is the optical path through the optical system along the optical axis (the
minus sign accounts for the fact that R′ is a negative number for a converging
spherical wave). The second distance Dray =

√
R2 + x2 + l(x′, x) +

√
R′2 + x′2.

Setting Ddirect = Dray and applying the paraxial approximation (x� R etc...),
we get

l = R−R′ + L0 −R−
x2

2R
+R′ +

x′2

2R′
.

Note again that we have adjusted the signs to account for the fact that R′ is a
negative number. Using the ABCD matrix for the system gives

R =
x

θ
=

Bx

x′ −Ax
,

and R′ =
x′

θ′
=

Bx′

Dx′ − x
.
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Putting this all together yields the expression

l(x′, x) = L0 −
1

2B

[
Dx′2 +Ax2 − 2xx′

]
. (22)

Inserting this expression into (19) and (18) results in a simple, universal ex-
pression, that enables one to propagate a paraxial field through an arbitrarily
complicated optical system in a single calculation, simply using the ABCD
matrix for the system. Nice.

3.3 Gaussian Beams

Now, a Gaussian beam is about the simplest kind of beam one could think of.
Fortunately, it is also precisely the type of beam that is actually produced by
lasers in the laboratory. Therefore understanding the Gaussian beam will get
you 90% of the way to being a laser physicist. So, where does the idea come
from? We start by returning to the time-independent scalar wave equation —
the Helmholtz equation — describing one component of the electric field in free
space. [

∇2 + k2
]
E = 0. (23)

Now, in the paraxial approximation, we have a beam that essentially looks like
a plane wave, propagating along the optical axis, except that it has some finite
extent in the transverse direction:

E(x, y, z) = U(x, y, z)e−ikz. (24)

The function U is slowly varying, meaning that it can be considered constant
on the scale of an optical wavelength. Therefore we have |∇U | � kU . On
substituting (24) into (23), we obtain the paraxial wave equation

eikz
[
∂2
x + ∂2

y + ∂2
z − 2ik∂z − k2 + k2

]
U = 0,

⇒ ∇2
⊥U ≈ 2ik∂zU. (25)

Note the similarity of this to the time-dependent Schrödinger equation — the
existence of a complete set of eigenfunctions satisfying this equation should not
be a surprise. Anyhow, for the moment, consider the trial solution

U = e−i[P+ k
2q r

2], (26)

where P (z) and q(z) are two — in general complex — functions of z, and where

r =
√
x2 + y2 is the perpendicular distance from the optical axis. Substituting

this into our paraxial wave equation (25), we find

∇2
⊥U = − ik

q

[
2− ikr2

q

]
U,

and 2ik∂zU =

[
2k∂zP −

(
kr

q

)2

∂zq

]
U.
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Comparing coefficients of r, we get the conditions

∂zP =
1

iq
, (27)

and ∂zq = 1. (28)

This second equation is easily solved to yield

q(z) = q(0) + z.

That is to say, the function q simply grows linearly with distance. Now, since
distances are always real, the imaginary part of q does not change. For some
position, however, the real part of q can be cancelled by z, and at this position
q is then purely imaginary. Let us choose our coordinate system such that the
position z = 0 coincides with this point, so that we have

q(0) = i={q} = izR. (29)

We will see that the quantitiy zR, which has the dimensions of length, has a clear
interpretation. To bring this out, we make a cosmetic change to the solution
(26) by defining a pair of real functions R(z) and w(z) according to the relation

1

q
=

1

R
− 2i

1

kw2
. (30)

We then have
U = e−iP × e−ikr2/2R × e−(r/w)2 .

We’ll address the first term, involving P , shortly. The second term is a quadratic
phase factor with precisely the form expected for spherical waves in the paraxial
approximation, with radius of curvature R. The last term is not a phase factor,
but a real transverse Gaussian, describing damping of the field amplitude with
increasing distance from the optical axis. This term defines the solution as a
‘beam’, with a width characterized by w. Comparing the relations (29) and
(30), we find

R(z) = z

[
1 +

(zR

z

)2
]
, (31)

and w(z) = w0

√
1 +

(
z

zR

)2

, (32)

where w0 = w(0) =
√

2zR/k is the beam size at z = 0. Note that this beam
size is the smallest the beam ever gets: either side of z = 0 the beam grows
wider. Note also that at the beam’s narrowest point at z = 0, the radius of
curvature becomes infinite, R(0) −→∞, so that the phase fronts are flat at this
point. The distance zR is known as the Rayleigh range, because it quantifies the
distance either side of z = 0 over which the Gaussian beam is approximately
collimated (i.e. the distance over which w(z) is approximately constant). In
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fact, setting z = zR gives w(zR) =
√

2w0, so the Rayleigh range is the distance
either side of z = 0 over which the beam size lies between and 1 and

√
2 times its

minimum size. At distances much greater than the Rayleigh range, the beam
width rapidly diverges. The radius of curvature R grows linearly with z for
z � zR, so that from afar, a Gaussian beam looks like a spherical wave centred
on z = 0.

The reason for the divergence of the beam is diffraction: a bundle of waves
cannot remain localized indefinitely, and their spreading is responsible for the
‘de-focussing’ of the beam. The trade off between spatial localization and colli-
mation is reflected by the behaviour of the Rayleigh range zR = kw2

0/2, which
can be expressed as

zR = π × w2
0

λ
.

If we consider Fraunhofer diffraction from a slit of width w0, the diffraction
angle would be, roughly θdiff ∼ λ/w0, and the size of the diffraction pattern
after a distance z would be, roughly, zθdiff ∼ zλ/w0. If we require that this size
is approximately the same as slit itself, we get,

w0 ∼ zλ

w0
,

⇒ z ≈ w2
0

λ
.

From this perspective, one can interpret the spreading of a Gaussian beam in
terms of Fraunhofer diffraction from its own focus.

What about the phase P? Integrating (27) gives

P (z) = −i

∫ z

0

1

z′ + izR
dz′

= −i ln

(
z

zR
+ i

)

= −i ln


[

1 +

(
z

zR

)2
]1/2

ei tan−1(zR/z)

 .

Substituting this result into (26), we get

U(r, z) =
w0

w(z)
e−iζ(z) × e−ikr2/2R(z) × e−[r/w(z)]2 . (33)

The pre-factor w0/w(z) accounts for the reduction in amplitude of the field as it
spreads out. The longitudinal phase ζ(z) = tan−1(zR/z) is known as the Guoy
phase.

3.4 Gaussian beam propagation

What happens to a Gaussian beam when it encounters a lens? The beam size is
not changed, since the lens is assumed to be thin. Only the transverse phase is
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affected. We have already identified the transverse phase of a Gaussian beam as
being that of spherical waves with radius of curvature R. Using the “ABCD”
law (16) and the lens transfer matrix (15), along with the relation (29), we
derive the transformation law for the q parameter

1

q′
=

1

q
− 1

f
.

We also have derived q′ = q+L for free space propagation, which compares with
the transformation R′ = R + L derived in (17) above. Therefore the complex
radius of curvature q transforms in precisely the same way as the real radius
of curvature R does, upon propagation through lenses and free space. This
property is summarized by the ABCD law

q′ =
Aq +B

Cq +D
.

That is, the propagation of a Gaussian beam through an arbitrary optical system
can be described using the ray transfer matrix for the system, and applying the
above law to find the new q parameter. Note: this law can be explicitly verified
by inserting (33) into the propagation integral (18), and using the kernel (19)
with the path length given in the ABCD formalism by (22).

3.5 Focussing a Gaussian beam

How tightly can a Gaussian beam be focussed by a lens? This can be answered
easily by considering the problem in reverse: to what beam size does a Gaussian
beam spread over the focal length f of a lens, if its focus has a beam waist w0.
A simple geometric argument yields

w(f) ≈ fθdiff

=
fλ

w0
,

or w0 ≈ fλ

w(f)
.

That is, the size of the focal spot w0 is limited by the size of the beam w(f)
on the lens: to get a tighter focus, you need to start with a wider beam, and
thus a wider lens. Also, shorter focal lengths and shorter wavelengths allow for
tighter focussing.

4 Lecture 4: Optical cavities and resonators

4.1 Cavity stability

A cavity is essentially a trap for electromagnetic fields, formed by enclosing a
volume with reflective surfaces. Trapping fields in this way stops them from
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spreading and dissipating, so that a high intensity, and a large electromagnetic
energy, can be concentrated in a prescribed region. A microwave oven is just
a cavity for microwaves: when it is switched on, the field strength grows so
large that you can zap your lasagne. In a laser, an optical cavity is employed to
raise the intensity of the field within the laser gain medium: this stimulates the
extraction of more energy, resulting in a bright, coherent field, which leaks out
of the cavity as a beam. Optical cavities are generally not completely enclosed
on all sides: instead, it’s possible to confine a beam using just a pair of mirrors
to fold a beam back on itself. If this beam is well collimated, losses due to
diffraction of the beam out of the sides of the cavity can be made very small. It
is very instructive to analyze this kind of very simple cavity, which is comprised
of just two curved mirrors, aligned to face each other. We can get a long way
by considering the ray transfer matrices associated with propagation in such a
system. As an initial simplification, we start by ‘unfolding’ the cavity: instead
of two curved mirrors, M1 and M2, think instead of an infinite series of equally-
spaced lenses L1 and L2. Start by launching a ray r = (x, θ)T just after the
first lens L1, and then consider: propagation, L2, propagation, L1, propagation,
L2, etc.... After n lenses (i.e. after n round-trips of the real cavity), the ray is
described by the vector

rn = Mnr,

where M = L1PL2P is the matrix formed from the product of the ray transfer
matrix P for propagation over the cavity length with the matrices L1, L2 for
propagation through the lenses. To analyze the behaviour of the propagator
Mn, we can diagonalize M , which yields the characteristic equation

λ2 − tr {M}+ |M | = 0,

⇒ λ± =
tr {M}

2
±

√(
tr {M}

2

)2

− |M |,

where tr {M} = A + D and |M | = AD − BC = 1 are the trace and the deter-
minant of M , respectively (recall that our ray transfer matrices are unitary).
Now, we can distinguish two cases. First, suppose that −2 ≤ tr {M} ≤ 2. In
this case, we can define an angle θ such that tr {M} /2 = cos(θ), and then we
can write

λ± = cos(θ)± i sin(θ) = e±iθ.

On the other hand, if |tr {M}| > 2, then the cosine function is not an appropriate
parameterization. Instead write tr {M} /2 = cosh(ψ). This yields

λ± = cosh(ψ)± sinh(ψ) = e±ψ.

Now, if we express the initial ray r in terms of the eigenvectors r± associated
with the two eigenvalues λ± as r = c−r− + c+r+, then the final ray, after n
cavity roundtrips, can be simply written as

rn = c−λ
n
−r− + c+λ

n
+r+.
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It is now clear that the two situations we distinguished above predict drastically
different behaviour as n grows large. In the first case, we have

rn = c−e
−iθnr− + c+e

iθnr+, (34)

whereas in the second case, we have

rn = c−e
−ψnr− + c+e

ψnr+. (35)

The first relation (34) describes an oscillatory behaviour, in which each compo-
nent of the ray experiences a phase shift upon completion of a roundtrip. This
is stable behaviour, because the ray continues indefinitely, evolving in a peri-
odic fashion. On the other hand, the second relation (35) describes exponential
damping of one component, and exponential growth of the other. This is clearly
unstable behaviour. The displacement and direction of the eigenray r+ grows
larger and more oblique with each roundtrip; the other eigenray r− becomes
increasingly confined to the optical axis. Such cavities do not form an efficient
trap for radiation, because rays are quickly ejected from the sides of the cavity
or confined to its axis.

Let’s analyze this stability condition for the sake of our two-mirror cavity.
Having unfolded it, we can easily express the ABCD matrices for the compo-
nents as

P =

(
1 L
0 1

)
, L1 =

(
1 0
− 1
f1

1

)
, L2 =

(
1 0
− 1
f2

1

)
.

Therefore M is given by

M =

 [
1− L

f1

] [
1− L

f2

]
− L

f2
L
[
2− L

f1

]
− 1
f1

[
1− L

f2

]
− 1

f2
1− L

f1

 .

Taking the trace of M , the stability condition is

−2 ≤ 1− L

f1
+

[
1− L

f1

] [
1− L

f2

]
− L

f2
≤ 2,

which can be re-written as

0 ≤
[
2− L

f1

] [
2− L

f1

]
≤ 4.

One can then classify the stability of two-mirror resonators of this type with
reference to a fairly simple diagram.

4.2 Gaussian and Hermite-Gaussian modes

We have already seen that the Gaussian beam is a solution of the paraxial wave
equation, given by

U(r, z) =
w0

w(z)
e−iζ(z) × e−ikr2/2R(z) × e−[r/w(z)]2 ,
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where
ζ(z) = tan−1(z/zR)

is the Guoy phase, and where w(z) and R(z) are the beam waist and radius of
curvature, respectively.

In fact, the Gaussian beam is the simplest of a family of solutions. The most
commonly encountered family is the set of Hermite-Gaussian modes. These can
be found by separating the solution U(x, y, z) into two parts,

U(x, y, z) = un(x, z)× um(y, z).

The integers n and m will play the role of mode indices. Substituting this trial
solution into the paraxial wave equation

∇2
⊥U = 2ik∂zU,

one can separate variables and obtain equations for un and um which are both
of precisely the same form, namely

∂2
xun = 2ik∂zun. (36)

If we substitute the trial solution

un(x, z) = hn

(
x

p

)
e−i[P+ k

2q x
2], (37)

into (36), where p, q and P are all functions of z, and as before ∂zq = 1, we
obtain the differential equation

h′′n − 2ik

[
p

q
− p′

]
xh′n −

ikp2

q
[1− 2iqP ′]hn = 0, (38)

where primes indicate differentiation with respect to the argument of each func-
tion, and where we have used the fact derived previously for the case of the
simple Gaussian mode that q′ = ∂zq = 1. The key observation is that this
rather messy looking equation is similar in structure to the following differential
equation,

H ′′n − 2
x

p
H ′n + 2nHn = 0, (39)

whose solutions Hn(x/p) are known as the Hermite polynomials. The first few
polynomials are given by

H0(x) = 1,

H1(x) = x,

H2(x) = 4x2 − 1,

H3(x) = 8x3 − 12x.

These polynomials appear in the description of the eigenfunctions of the quan-
tum harmonic oscillator, and they form a complete orthonormal set in which
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any function can be expanded. Therefore they form a basis of modes into which
any paraxial optical field can be decomposed. There are a number of ways to
bring the equation (38) into correspondence with (39). The most commonly
used definitions involve setting p(z) = w(z)/

√
2, which satisfies the equation

ikp

(
p

q
− p′

)
= 1,

associated with matching the coefficients of h′n and H ′n in (38) and (39). Match-
ing the coefficients of hn and Hn, we also require that

ikp2

(
2iP ′ − 1

q

)
= 2n,

so that P must depend on n. Rearranging gives

P ′n = − 1

z2 + z2
R

[(
n+

1

2

)
zR +

i

2
z

]
,

which can be solved to yield

Pn(z) = −
(
n+

1

2

)
tan−1

(
z

zR

)
− i

4
ln

(
z2 + z2

R

z2
R

)
= −

(
n+

1

2

)
tan−1

(
z

zR

)
+

i

2
ln

[
w0

w(z)

]
.

Substituting this back into (37), and including the corresponding result for
the y coordinate, one can write a Gaussian beam in the form

Unm(x, y, z) =
w0

w(z)
e−i(n+m+1) tan−1(z/zR)Hn

(√
2

x

w(z)

)
Hm

(√
2

y

w(z)

)
e−ik(x2+y2)/2q(z).

The mode indices n and m count the number of nodal lines in the x and y
directions, respectively. Note that for these higher order modes, the Guoy phase
is modified and becomes ζnm(z) = (n+m+ 1) tan−1(z/zR).

4.3 Longitudinal modes

In a real optical resonator, the fields are reflected back on top of each other,
and therefore they must add in phase if a significant field is to build up. Having
derived the conditions for stable operation using the ray transfer matrices for
the ‘unfolded’ cavity, we now need to impose this additional condition, which
manifests itself as a restriction on the optical frequencies supported by the
cavity. To see this, we impose the periodic boundary condition that after one
roundtrip, the longitudinal phase of the optical field is unchanged. The length
of a roundtrip is 2L, where L is the cavity length, so this condition can be
written as

φ(2L) = 2πp,
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where p = 0, 1, 2, ... is some integer, and where

φ(z) = kz + ζnm(z)

is the optical phase, found by adding the phase associated with the plane wave
carrier and the Guoy phase for the transverse mode we are considering. Using
the free space dispersion relation ω = ck, we find the allowed frequencies to be

ωp =
c

2L

[
2πp+ ζnm

(
2L

2

)
− ζnm

(
−2L

2

)]
=

c

L
[πp+ ζnm(L)] .

These frequencies define the longitudinal modes of the laser oscillator. Note that
the frequency spacings between the modes is just set by the cavity length, but
the Guoy phase associated with the transverse mode contributes a small offset.
For L� zR, we have ζ(L) ≈ (n+m+ 1)π/2, which is usually very small, since
m ∼ n ∼ 1, while p ∼ L/λ ∼ 106.

4.4 Solving for the q parameter

The real advantage of using the Hermite-Gaussian modes as a means of de-
scribing laser oscillation, is that the ABCD law for the transformation of the q
parameter,

q′ =
Aq +B

Cq +D
, (40)

can be used for any of the Hermite-Gaussian modes, in order to analyze their
propagation through an arbitrary optical system. To show that the condition
for a stable resonator applies for Gaussian and Hermite-Gaussian modes, this
law can be expressed as (

q′

1

)
=

(
A B
C D

)(
q
1

)
.

Which shows that the condition on the eigenvalues of the ABCD matrix applied
in the case of rays, is also required here to prevent divergence of the q parameter
over multiple roundtrips.

The condition (40) can also be used to find the shape of a given optical mode,
once its indices n, m and p are specified. One simply imposes the requirement
that q′ = q, and solves the resulting quadratic equation, which is of the form

Cq2 + (D −A)q −B = 0,

⇒ q =
(A−D)

2C
− i

√
4− (A+D)2

2|C|
.

This is, explicitly, a solution for q(zref) at the reference plane we used to define
the ABCD matrix for the cavity (recall that we ‘started’ the propagation just

23



after the first mirror). Use of the propagation formula q(zref + z) = q(zref) + z
allows us to find the q parameter at any other position in the cavity. And from
q we are able to find the beam waist w(z) and the radius of curvature R(z).
Therefore the beam is completely specified.

5 Lecture 5: Waveguides

5.1 Optical Fibres

Light travels quickly, does not interact with itself, and is easily generated and
detected. Therefore light is extremely appealing as an information carrier,
and data transmission using optical signals now forms the bedrock of mod-
ern telecommunications systems. But these innovations rely on the ability to
send light down ‘wires’. How is this done?

In an optical fibre, light is guided down a thin glass filament whose refractive
index is higher than the surrounding material. The simplest picture for how this
guiding is accomplished is to consider rays propagating at small angles to the
symmetry axis of the fibre: when they encounter the boundary of the central
core, they experience total internal reflection, provided that they subtend an
angle larger than the critical angle with the normal to the boundary. These
rays make their way down the fibre by repeated reflections at the boundary. If
the fibre is bent or coiled, the light can be guided around corners, provided that
the curvature of the fibre is not so large as to allow rays to escape the core.

Based on this picture, one can calculate the acceptance angle of such a ‘step-
index’ fibre — the largest angle that an incident ray may make with the fibre
axis such that it will be guided down the fibre. Suppose the ray is launched
into the fibre from the surrounding air at an angle α. Snell’s law tells us that,
when the ray inside the fibre encounters the core boundary at the critical angle
θc, we have

sinα = n1 sin (π/2− θc)

= n1

√
1− sin2 θc

=
√
n2

1 − n2
2,

where in the second line we used the relation sin θc = n2/n1 for the critical angle,
and where n1 and n2 are the refractive indices of the core and the surrounding
cladding respectively. The quantity

√
n2

1 − n2
2 is known as the numerical aper-

ture (NA) of the fibre. Note how larger refractive index differences between the
core and the cladding increase the NA and allow larger acceptance angles: they
guide light more strongly. A convenient expression for the NA can be found
when the difference between the refractive indices is small, so that

∆ =
n1 − n2

n2
� 1.
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In that case, we can write

NA =
√

(n1 − n2)× (n1 + n2)

≈
√

∆n2 × 2n2

= n2

√
2∆.

Typical values for ∆ and n2 are 0.01 and 1.4, which yields a numerical aperture
of ∼ 0.2, and therefore a maximum acceptance angle of ∼ 11◦.

5.2 Fibre modes

The ray-optics treatment of fibres is clearly instructive, but — as always —
is rather incomplete. Of course, the light in an optical fibre is wavelike, and is
described by Maxwell’s equations. The confinement of the light to the fibre core
can be thought of rather like the confinement of an electron wave in a Coulomb
potential as described by Schrödinger’s equation. The refractive index step
makes it energetically favourable for the optical field to propagate within the
core, and diffraction out of the sides of the fibre is suppressed, as if the cladding
were repulsive. To see how this works, consider the wave equation for the electric
field, [

∇2 − n2
1

c2
∂2
t

]
E = 0. (41)

The symmetry of the fibre naturally suggests that we employ cylindrical coor-
dinates, so that the equation becomes

1

r
∂r (r∂rE) +

1

r2
∂2
φE + ∂2

zE −
n2

1

c2
∂2
tE = 0. (42)

Assuming a monochromatic field with frequency ω, and a linear polarization,
which we’ll define to be along the x-axis, we proceed by substituting in the
following ansatz,

E = x̂R(r)Φ(φ)ei(βz−ωt). (43)

Here β is the propagation constant — essentially the wavevector of the propa-
gating mode — and R and Φ represent the radial and azimuthal dependence of
the field, respectively. Using (43) in (42), we find

Φ
1

r
∂r (r∂rR) +

R

r2
∂2
φΦ−RΦ

[
β2 −

(n1ω

c

)2
]

= 0. (44)

This simplifies further if we assume a very simple azimuthal dependence,

Φ(φ) = e±ilφ,

where l is an integer. This yields,

1

r
∂r (r∂rR) +

[(n1ω

c

)2

− β2 − l2

r2

]
= 0,
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or [
r2∂2

r + r∂r + r2k2
T − l2

]
R = 0, (45)

where we have defined the transverse wavevector

k2
T =

n2
1ω

2

c2
− β2.

This radial equation is recognizable as Bessel’s equation, and it is solved by
Bessel functions. In the fibre core we expect solutions that are well-behaved,
oscillatory functions, and so we use the ordinary Bessel functions of the first
kind, Rcore ∝ Jl(kTr).

Now, in the cladding, the wave satisfies essentially the same equation (45),
except that the refractive index becomes n2 instead of n1. The character of the
solution should change too, since the mode is damped rather than propagating.
To see how this arises, we write the radial equation in the cladding in the form[

r2∂2
r + r∂r −

(
r2γ2 + l2

)]
R = 0, (46)

where γ2 = β2 − n2
2ω

2

c2 is a positive quantity, because the refractive index n2 of
the cladding is small. This equation is solved by the modified Bessel functions,
and of those, the functions with the correct damped behaviour are the modified
Bessel functions of the second kind, denoted by Rcladding ∝ Kl(γr).

At the boundary between the core and the cladding, r = a, these two solu-
tions should ‘match’, meaning that the field E should be continuous across the
boundary. The full solution is therefore found by stitching the two solutions
together,

Ecore(r < a, φ) = x̂E0
Jl(kTr)

Jl(kTa)
cos(lφ)ei(βz−ωt),

Ecladding(r > a, φ) = x̂E0
Kl(γr)

Kl(γa)
cos(lφ)ei(βz−ωt), (47)

where both the ‘plus’ and ‘minus’ solutions for Φ(φ) were combined to guarantee
that the solution for the field is real. In addition to matching the magnitudes
of the fields at the core/cladding interface, the derivatives of the fields should
also be matched. Differentiating both the fields with respect to r and setting
the derivatives equal to one another at r = a for all φ yields the condition

kT
Jl−1(kTa)

Jl(kTa)
= −γKl−1(γa)

Kl(γa)
, (48)

where we have used the recursion relations that hold for Bessel functions to
re-express their derivatives in terms of functions with different orders. (48) is
known as the characteristic function of the fibre, which connects kT and γ, given
the fibre radius a. Since kT and γ both contain the propagation constant β and
the ‘vacuum wavevector’ k = ω/c = 2π/λ, (48) expresses the dispersion relation
of the fibre that determines the dependence of β on k. Since β parameterizes
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the velocity of optical signals propagating along the fibre, this relation is critical
in determining what signals the fibre carries, and how much these signals are
distorted by dispersive spreading.

Here we briefly note that the solution (47) does not strictly satisfy Maxwell’s
equations — in order that the field is divergence free, the y and z components
of E cannot be exactly zero. But they are small, and are generally neglected.
The same is true of the paraxial description of Gaussian beams in free space.

It is also worth commenting that we are not exactly right when we enforce
continuity of the electric field E across the core/cladding boundary. Recall that
in a dielectric medium free of free charges, it is the divergence of the displacement
field D that vanishes, and therefore it is the radial component of D that is
continuous across the boundary. However, there is not much difference between
enforcing the continuity of E and that of D. Inserting D = ε0εrE = ε0n

2E, we
find that continuity of D causes a relative difference between the electric fields
at the boundary of

Ecore(r = a)− Ecladding(r = a)

Ecladding(r = a)
=

n2
1 − n2

2

n2
2

=
(n1 − n2)(n1 + n2)

n2
2

= 2∆

� 1.

5.3 Fibre modes

The solution (47) describes an optical mode that propagates without significant
loss, provided that the field does not penetrate far into the cladding. That is
to say, the field inside the cladding should be damped, otherwise optical power
can propagate freely out of the core, and the light is eventually absorbed at or
lost from the outer edge of the fibre. The condition that the cladding field is
damped is simply that γ is positive, and so the cutoff condition γ = 0 expresses
when a mode becomes lossy. Recall that the transverse wavevector is given by
k2

T = n2
1ω

2/c2 − β2. In order that a mode is freely propagating, and not lossy,
we have γ = β2 − n2

2ω
2/c2 > 0, so that β2 > n2

2ω
2/c2, and therefore

k2
T <

ω2

c2
(
n2

1 − n2
2

)
,

⇒ kTa < ka
√
n2

1 − n2
2.

That is, for a mode to propagate, the argument kTa of the Bessel function on
the left hand side of the characteristic equation (48) must be smaller than ka
times the numerical aperture of the fibre. The close connection between the
cutoff condition and the fibre NA is not surprising, since a wide acceptance
angle for incident rays translates into the ability to support a large number of
optical modes. The quantity kaNA is sometimes called the v-parameter of the
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fibre:

v = kaNA = ka
√
n2

1 − n2
2 ≈ kan2

√
2∆.

Note that the characteristic equation at cutoff becomes (setting γ = 0 on the
right hand side of (48)),

Jl−1(kTa)

Jl(kTa)
= 0. (49)

This condition determines the values of kTa at which modes switch from being
freely propagating to being lossy.

5.4 l = 0 mode

The lowest order LP (linear polarization) fibre mode is the l = 0 mode, which
has a field pattern given by

Ecore(r, φ, z, t) = x̂E0
J0(kTr)

J0(kTa)
ei(βz−ωt). (50)

The characteristic equation at cutoff (49) is solved when J−1(kTa) = 0. Since
J−1(kTa) = J1(kTa), we require that kTa is a zero of J1. The first such zero
is at kTa = 0. Therefore the lowest order LP0 mode can propagate without
loss provided that v > 0. That is, any v-parameter (any numerical aperture) is
sufficient to support the LP0 mode. Therefore a step-index fibre of any radius
and any index contrast can support a lowest order mode. This lowest order
mode is two-fold degenerate because there are two possible polarizations.

5.5 l = 1 mode

The LP1 mode has an azimuthal dependence, so in cross section it has the
appearance of a pair of lobes — this is of course very similar to the TEM01

Hermite-Gaussian mode supported by a laser cavity. The mode is 4-fold de-
generate because there are two polarizations and two orthogonal orientations
for the lobes. The cutoff condition of the l = 1 mode is found from (49) to be
J0(kTa) = 0. The first zero of J0 occurs at kTa ≈ 2.4, and so the cutoff con-
dition is v > 2.4. For typical telecoms wavelengths of λ ∼ 1.5 µm, and typical
fibre contrasts, this translates into a minimum core radius of 2 µm < a < 5 µm.
That is to say, fibres with smaller core radii cannot support the l = 1 mode.
Higher modes are similarly unsupported in such fibres. For this reason, such
narrow fibres are known as single mode fibres, since only the lowest order, l = 0
mode can propagate. In general, different fibre modes propagate with different
speeds (they have different values for β), which causes data pulses to spread out
and blur if they are carried over multiple modes. Therefore single mode fibres,
in which all optical data is confined to a single mode, are extremely useful.
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5.6 Dispersion

Pulses propagating in a fibre will travel at the group velocity determined by the
gradient of β with respect to k. If the dispersion relation β(k) is non-linear, so
that the curvature ∂2

kβ is non-zero, then in addition to a group delay, pulses
will be distorted and broadened as they propagate in the fibre. The dispersion
due to the curvature of β depends on the characteristic equation (48), but also
on the material dispersion (the extent to which the refractive indices n1 and n2

depend on k). In general, the former becomes significant only for modes close
to cutoff, where β becomes significantly different from n1k. If one defines the
quantity b according to the relation

b =
(β/k)2 − n2

2

n2
1 − n2

2

, (51)

one can re-write the characteristic equation in terms of b and v,

v
√

1− bJl−1(v
√

1− b)
Jl(v
√

1− b)
= −v

√
b
Kl−1(v

√
b)

Kl(v
√
b)

.

A choice of v implies k, and then choosing b fixes β. β can be written in terms
of b by re-arranging (51) to get

β2 = k2
[
n2

2 + b(n2
1 − n2

2)
]

≈ n2
2k

2 [1 + 2∆b] ,

where in the second line we used the approximation that ∆ � 1. Taking the
square root gives

β ≈ n2k + n2k∆b.

Expressing this in terms of v = ka
√
n2

1 − n2
2 ≈ kan2

√
2∆, we have

β ≈ n2k +
vb

a

√
∆

2
.

Now we can express the derivative of β with respect to k as follows,

∂kβ = ∂k (n2k) +
1

a

√
∆

2
∂k (vb)

= ∂k (n2k) + n2∆∂v (vb) ,

where we have neglected the derivative of ∆, which is small when the disper-
sive behaviour of n1 and n2 are similar. The first term represents material
dispersion, arising from the variation of n2 with k. The second term represents
the waveguide dispersion, arising from the multiple reflections of the fibre mode
from the core/cladding boundary. This latter term becomes particularly im-
portant close to a cut-off frequency, when β approaches n2k and becomes very
dispersive.
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