
Revision class TT: Quantum Information

Please do not hand in answers to the following problems. The quantum cryptography and
revision problems will be discussed in the revision class in detail. The additional worked examples
will not be discussed in class unless you have queries about them. They share similarities with
previous exam questions and can be used for revision.

6 Quantum cryptography

1. We assume that a communication channel used by Alice and Bob for a BB84 key dis-
tribution is capable of transmitting 1000qubits per second (assuming that δ may be set
to zero in this case). What is the average key generation rate that Alice and Bob can
achieve if they a) assume that no eavesdropper can be present and thus do not publicly
compare parts of their key; b) an eavesdropper using intercept/resend strategy on each
second qubit should be detected with 99.9% probability after two seconds. How much
mutual information can be established between Alice’s bit string A and the eavesdropper
during these two seconds?

2. For the phase encoding systems in Fig. 1 determine the probability for a photon to be
incident on D0 and D1 as a function of the two phases induced by the two independent
phase modulators (PM) with phases φA and φB. Note that for the setup shown in Fig. 1b
the photons going along paths SS and LL do not contribute to the signal. Explain how
these setups can be used to realize the BB84 protocol. Show how a difference in the
optical path length of the two fibres connecting Alice and Bob in Fig. 1a leads to errors.
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Figure 1: Phase encoding in the BB84 protocol

3. In quantum key distribution with EPR pairs calculate the probabilities P±±(φa, φb) for
the Bell state

|Ψ〉 =
1√
2

[|V 〉1|H〉2 − |H〉1|V 〉2]

created by the EPR source. Use these results to calculate the expectation value E(φa, φb)
and check that S = −2

√
2.

Revision class problems

The revision class problems are taken from the C2 paper of 2008.
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4. The result of a quantum mechanical measurement can be described by a Hermitian opera-
tor M . If the system is in an eigenstate |m〉 of M , then the outcome of the measurement is
the corresponding eigenvaluem (you may assume that all eigenvalues are non-degenerate),
and the state is unchanged. Describe what happens if the system is not in an eigenstate.
Show that the eigenvalues m are real, and that eigenstates corresponding to distinct
eigenvalues are orthogonal.

Consider a single qubit which is known to be in one of two states, |0〉 or |+〉, with equal
probability. Explain why these states cannot be distinguished by a single measurement,
and why repeated measurements do not help. Describe what happens to each of the
two states if a measurement is made in the Z-basis. Show that only one of the possible
outcomes can provide certain knowledge of the initial state of the qubit, while the other
outcome is ambiguous. Calculate the overall probability of each outcome occurring, and
determine what probabilistic conclusions can be drawn about the initial state in each
case. What would happen if the measurement was made in the X-basis instead?

An alternative approach, due to Helstrom, is to design a measurement which allows both
states to be detected as well as possible, although neither can be detected unambiguously.
In this case it is simpler to consider distinguishing between the two states

|a〉 = cos(π/8) |0〉+ sin(π/8) |1〉 , and
|b〉 = cos(3π/8) |0〉+ sin(3π/8) |1〉 ,

which are again assumed to occur with equal probability. What probabilistic conclusions
can be drawn about the initial state for each outcome of a measurement made in the
Z-basis? What would happen if the measurement was made in the X-basis instead?

Measuring in the Z-basis is the Helstrom optimised measurement for distinguishing be-
tween |a〉 and |b〉. Use the Bloch sphere picture to describe the states |a〉 and |b〉, and
hence, or otherwise, determine the Helstrom measurement for distinguishing between |0〉
and |+〉.

5. The full Hamiltonian for a two spin NMR system has the Heisenberg form

HH =
ω1

2
σz ⊗ 1 +

ω2

2
1⊗ σz +

ω12

2
σ · σ,

where the Heisenberg coupling is given by

σ · σ = σx ⊗ σx + σy ⊗ σy + σz ⊗ σz,

and factors of ~ have been dropped as usual in NMR. Write down explicit matrix forms
in the computational basis for the Heisenberg coupling and for HH, and use perturbation
theory to determine the conditions under which HH can be approximated by the Ising
form

HI =
ω1

2
σz ⊗ 1 +

ω2

2
1⊗ σz +

ω12

2
σz ⊗ σz.

Explain why this approximation is better when larger magnetic field strengths are used.

Consider the case ω1 = ω2 and use a rotating frame transformation to remove the Zeeman
terms from the full Hamiltonian. Find an explicit matrix expression for the propagator U
corresponding to evolution under the Hamiltonian in this frame for a time t and evaluate
the total propagator for the network
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(a modified spin-echo sequence). Explain why this network could not in fact be imple-
mented in an NMR spin system with ω1 = ω2.

Explain briefly the difference between quantum error correction and decoherence free
subspaces. Describe a simple decoherence free subspace encoding one logical qubit in
two physical spins and show that a general state of the logical qubit is protected against
simultaneous Z gates.

6. Three parties A1, A2 and A3 separated by a distance L initially possess two pairs of
entangled qubits in state |ψ−〉 as shown in the figure.

iA1

|ψ−〉

A2L ii
|ψ−〉

A3L i

Explain the entanglement swapping protocol which turns this initial setup into an entan-
gled pair of qubits in state |ψ−〉 shared between parties A1 and A3.

Calculate the reduced density operator of the qubits possessed by A1 and A3 initially and
after each step of this protocol and work out their mutual information. Why does the
protocol not violate causality? Calculate the amount of classical information gained by A2

in the measurement which is part of the above protocol. Compare this with the entropy
of the reduced density operator of A2’s qubits before the measurement and discuss the
relation between this entropy and the information obtained by the measurement.

iA1

|ψ−〉

A2L ii
|ψ−〉

A3L ii
|ψ−〉

A4L ii · · ·
AN−1ii

|ψ−〉

L
ANi

Consider an extension of the entanglement swapping protocol to N parties A1 · · ·AN
separated by a distance L as shown in the figure. Devise a sequence of elementary
entanglement swapping steps which creates an entangled pair of qubits in state |ψ−〉
between A1 and AN . Assuming that only 50% of all elementary entanglement swapping
steps are successful, calculate the probability of success for the overall protocol as a
function of N . Discuss possible implications of the scaling of this probability with N for
long distance quantum communication via glass fibres.

The setup shown in the figure can be used to transmit two classical bits of information
from A1 to AN . Devise a scheme to achieve this where the intermediate parties An
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with 1 < n < N are allowed to know the classical information transmitted from A1 to
AN . Show that, neglecting the time needed for local operations, the transmission can be
completed in a time t = (N − 1)L/c with c the speed of light. Explain how, by using
entanglement swapping prior to transmitting the classical bits, a scheme which does not
give the intermediate parties access to the classical information can be realized. Discuss
practical disadvantages of this scheme.

7. Some internal states of an atom are suitable for representing basis states of a qubit.
Which properties should internal atomic states have to make a ‘good’ qubit? Identify
two atomic states of the alkali atom 87Rb (nuclear spin I = 3/2) which possess these
properties and can be used to realize a qubit. Explain how single qubit gates can be
performed in this atomic qubit.

A laser setup is switched on for a time 2τ and induces the two qubit SWAP gate with
truth table

|0〉 ⊗ |0〉 → |0〉 ⊗ |0〉
|0〉 ⊗ |1〉 → |1〉 ⊗ |0〉
|1〉 ⊗ |0〉 → |0〉 ⊗ |1〉
|1〉 ⊗ |1〉 → |1〉 ⊗ |1〉

on two adjacent atomic qubits. Write down the state resulting from the application of
this gate to an arbitrary two qubit product state |ψ〉 ⊗ |φ〉. Hence, or otherwise, discuss
whether the SWAP gate in combination with single qubit gates constitute a universal set
of quantum gates.

By turning the lasers on for a time τ , the operation
√

SWAP is realized. The states
|0〉 ⊗ |0〉 and |1〉 ⊗ |1〉 are unaffected by the dynamics. Calculate a matrix representation
of this

√
SWAP gate in the computational basis. Apply the network

U = H2

√
SWAP Z1

√
SWAP

√
Z2 H2

to the four computational basis states. Here Zi denotes the Z-gate applied to the i-th
qubit and H2 is the Hadamard gate on the second qubit. Extend this network using
single qubit gates to realize a CNOT gate. Discuss whether the

√
SWAP gate together

with single qubit gates constitute a universal set of quantum gates.

Additional worked examples

8. For quantum dense coding Bob needs a Bell state analyzer. What is the channel capacity
(number of classical bits transmitted in one use of the channel) if Bob has an ideal Bell
state analyzer? How is this channel capacity reduced if the Bell state analyzer is only
able to identify the two Bell states |Ψ±〉 but cannot differentiate between the two Bell
states |Φ±〉?
Solution: Per use of the channel 2 bits are transmitted → channel capacity of 2 bits.
Possible encoding |ψ+〉 = |00〉, |ψ−〉 = |01〉, |φ−〉 = |10〉, |φ+〉 = |11〉
If the states |10〉 and |11〉 are not distinguished three distinct messages can be sent over
the channel per use.

→ C(N) = log2(3) = 1.53bits
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9. In the ZZZ basis a GHZ state is given by

|GHZ〉 =
1√
2
(|HHH〉+ |V V V 〉).

By rewriting this GHZ state in the bases XYY, YXY and YYX show that measuring two
of the photons in circular polarization determines the polarization of the third photon
in the X basis with certainty. Rewrite the GHZ state in the XXX basis and show that
measuring in this XXX basis violates the expectations of local realism.

Solution: We identify |H〉 and |V 〉 with |0〉 and |1〉 in the Z basis and then denote the
corresponding basis states in the X basis by |H ′〉 and |V ′〉 and in the Y basis by |R〉
and |L〉. Using

√
2|H ′〉 = |H〉 + |V 〉,

√
2|V ′〉 = |H〉 − |V 〉 and

√
2|R′〉 = |H〉 + i|V 〉,√

2|L〉 = |H〉 − i|V 〉 we find

1√
2

(|HHH〉+ |V V V 〉) =
1
4
(|(H ′ + V ′)(R+ L)(R+ L)〉 − |(H ′ − V ′)(L−R)(L−R)〉)

=
1
4
(|H ′RR〉+ |H ′RL〉+ |H ′LR〉+ |H ′LL〉

+|V ′RR〉+ |V ′RL〉+ |V ′LR〉+ |V ′LL〉
−|H ′RR〉+ |H ′RL〉+ |H ′LR〉 − |H ′LL〉
+|V ′RR〉 − |V ′RL〉 − |V ′LR〉+ |V ′LL〉)

=
1
2
(|H ′RL〉+ |H ′LR〉+ |V ′LL〉+ |V ′RR〉),

and by symmetry we find in the other bases

1√
2

(|HHH〉+ |V V V 〉) =
1
2
(|RH ′L〉+ |LH ′R〉+ |LV ′L〉+ |RV ′R〉),

1√
2

(|HHH〉+ |V V V 〉) =
1
2
(|RLH ′〉+ |LRH ′〉+ |LLV ′〉+ |RRV ′〉),

Therefore, measuring two photons in circular R, L polarization the state of the third
photon is fixed; if the two results are identical RR or LL then the third photon is in state
V ′ and for opposite plarizations LR or RL the polarization of the third photon is H ′.
Let us consider a measurement in the XXX basis. Quantum mechanically we find

1√
2

(|HHH〉+ |V V V 〉) =
1
4
(|(H ′ + V ′)(H ′ + V ′)(H ′ + V ′)〉+

|(H ′ − V ′)(H ′ − V ′)(H ′ − V ′)〉)

=
1
2
(|H ′H ′H ′〉+ |H ′V ′V ′〉+ |V ′H ′V ′〉+ |V ′V ′H ′〉),

Which outcomes are possible if the polarizations are elements of reality? The permuta-
tions of |GHZ〉 above imply that if H (V ) is obtained for one photon the other two have
to have opposite(identical) circular polarization. Imagine we find V and V for photons
2 and 3. Since 3 is V , 1 and 2 have to have identical circular polarization. Also, since
2 is V , 1 and 3 have to have identical circular polarization. If all of these are elements
of reality then all photons have identical circular polarization. Thus photon 1 needs to
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carry polarization V . We conclude that |V V V 〉 is a possible outcome. Similarly one can
verify that the only four possible outcomes

|V ′V ′V ′〉, |H ′H ′V ′〉, |H ′V ′H ′〉, |V ′H ′H ′〉.

Local realism and quantum mechanics predict opposite results in all cases!

10. Alice and Bob share an entangled pair of qubits in the state |φ+〉 = (|00〉 + |11〉)/
√

2
and Alice wants to use this EPR pair, a perfect Bell state analyzer and a classical com-
munication channel to transmit an unknown state |ψ〉 of a third qubit to Bob. Bob is
able to apply any single-qubit operation to his qubit. Describe and explain a protocol
for achieving this, giving the three-qubit state after each step in the protocol. How much
classical information needs to be transmitted over the classical channel to transmit one
qubit?

Now assume that Alice has an imperfect Bell state analyzer which cannot distinguish the
states |φ+〉 and |φ−〉 = (|00〉 − |11〉)/

√
2. She does not tell Bob about this imperfection

but randomly assumes one of the two states whenever the Bell state analyzer gives an
ambiguous result. Calculate the fidelity with which an arbitrary state |ψ〉 is teleported
in this case. Which states are teleported with maximum fidelity and which states are
teleported with minimum fidelity?

Solution: Teleportation protocol with entangled pair |φ+〉12 = (|00〉 + |11〉)/
√

2 and
particle to be teleported |ψ〉3 = α|0〉+ β|1〉.
Bell state measurement at Alice’s site with initial state before measurement: |ψ〉123 =
(α|000〉+ α|110〉+ β|001〉+ β|111〉)/

√
2 has the following possible outcomes

23〈φ+|ψ〉123 = (α|0〉1 + β|1〉1)/2 = |ψ+
φ 〉/2,

23〈φ−|ψ〉123 = (α|0〉1 − β|1〉1)/2 = |ψ−φ 〉/2,

23〈ψ+|ψ〉123 = (α|1〉1 + β|0〉1)/2 = |ψ+
ψ 〉/2,

23〈ψ−|ψ〉123 = (β|0〉1 − α|1〉1)/2 = |ψ−ψ 〉/2.
Each measurement outcome has probability 1/4. Not knowing the outcome of the mea-
surement the density operator is ρ123 = 1/4(|ψ+

φ 〉1〈ψ
+
φ |⊗ |φ

+〉23〈φ+|+ ...). If the outcome
is known the part corresponding to this outcome (renormalized) will be the actual density
operator.

After telling Bob the outcome he applies to his particle:

|φ+〉 : I, |φ−〉 : σz1 , |ψ+〉 : σx1 , |ψ−〉 : σx1σ
z
1 (up to a global phase).

Thus the state of the three particles becomes ρ123 = |ψ〉1〈ψ|⊗ (|φ+〉23〈φ+|+ |φ−〉23〈φ−|+
...)/4.

This state is a product state of particle 1 with particles 2,3. All information about
the initial state is transferred to particle 1. The reduced state of Bob’s particle is pure
ρ1 = tr23{ρ123} = |ψ〉1〈ψ| with |ψ〉1 = α|0〉1 + β|1〉1, i.e. the state has been teleported.

Classical information: Alice needs to send one of four messages (the measurement out-
comes) with equal probability per teleported qubit. This corresponds to H = log2(4) = 2
bits of classical information.

In the case of an imperfect Bell state analyzer the knowledge about the state of particles 23
is not perfect leading to (α|0〉+β|1〉)|ψ±〉 → |ψ〉〈ψ|⊗|φ±〉〈φ±|/2+|ψE〉〈ψE |⊗|φ±〉〈φ±|/2,
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where |ψE〉 = α|0〉 − β|1〉. After Bob applies his unitary operation we find ρ̃123 =
|ψ〉〈ψ|⊗ (|φ+〉〈φ+|/8+ |φ−〉〈φ−|/8+ |ψ−〉〈ψ−|/4+ |ψ+〉〈ψ+|/4)+ |ψE〉〈ψE |⊗ (|φ+〉〈φ+|+
|φ−〉〈φ−|)/8. We can now again trace over particles 2, 3 yielding ρ̃1 = 3|ψ〉〈ψ|/4 +
|ψE〉〈ψE |/4. The resulting fidelity is then given by F = 〈ψ|ρ̃1|ψ〉 = 3/4 + 1/4|〈ψE |ψ〉|2 =
3/4 + |1− 2|β|2|/4 with a maximum value of Fmax = 1 for |β|2 = 0 or |β|2 = 1 and states
|ψ〉 = |0〉 or |ψ〉 = |1〉. The minimum value Fmin = 3/4 is obtained for |β|2 = 1/2 and
states |ψ〉 = (|0〉+ eiφ|1〉)/

√
2 with arbitrary phase φ ∈ [0, 2π[.
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