
1 Exercises: quantum computation

These exercises are closely based on those in the forthcoming book by Jones and Jaksch,
and the numbering of sections follows the order in that book.In a few cases the exercises
have been slightly rewritten so they stand alone.These exercises are intended for self study
and worked answers are provided on the course website; you are very strongly advised to
make a serious attempt at all these exercises rather than just looking up the answer! The
exercises in section 9, with the exception of 9.1, are beyondthe scope of the Oxford course.

7. Principles of quantum computing

1. Show that for reversible classical computingclone andswap gates can be built out of
networks of controlled-not gates. Can these networks also be used for quantum com-
puting?

2. Show how to buildnot and controlled-not gates from Toffoli gates. Design a reversible
or gate using only Toffoli gates andnot gates.

3. The Fredkin gate is a three bit gate which swaps its two target bits if the single control
bit is set to 1. Show how a Fredkin gate can be used to implementreversiblenot and
and gates.

4. Use your network for aswap gate to show how a Fredkin gate can be built from three
Toffoli gates. Is it possible to build a Toffoli gate using only Fredkin gates?

5. Explain why the network identity

V† U V
=

VUV†

works (note that the apparent reversal in the order of the operators simply reflects the
different ordering conventions for operators and networks, andthatVV† = 1). Use this
identity to construct a Fredkin gate using only a single Toffoli gate and two controlled-
not gates.

6. Consider the reversible half adder network

a

b sum

0 carry

Explain how this network works. Why isn’t it necessary to preserve the second input?
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8. Elementary quantum algorithms

1. Given an oracleU f implementing a function from one bit to one bit, design a classical
circuit to directly determine the parity off in two queries using only two bits (that is
you may not store results “offline” for later comparisons and you may not use additional
ancilla bits).

2. Consider the explicit circuits corresponding to the fourfunctions fi j in Deutsch’s algo-
rithm.

Find an alternative circuit forf10 which applies single qubit gates to the upper qubit
rather than the lower qubit.

3. Prove that applying Hadamard gates to both qubits before and after the circuits shown
above gives the circuits shown below after simplification.

Z Z

4. Calculate an explicit matrix form for the Grover amplitude amplification operator in the
casen = 2, and hence show that Grover’s quantum search will reveal a single satisfying
input in a single query (you may neglect the ancilla qubit anduse an explicit phase shift
form for the action of the controlled gate on the two main qubits).

5. What happens in Grover’s algorithm if the function hastwo satisfying inputs? What
about three?

6. Show that the two encoding networks for quantum error correction

|ψ〉

|0〉

|0〉

|ψ〉

|0〉

|0〉

will act as desired, and write down corresponding decoding networks.

7. Consider the three qubit spin flip error correcting network. By working through the
network, find kets describing the state of the device immediately before the ancilla
qubits are measured for an arbitrary logical input with eachof the three single qubit
errors or no error. Show that these states can be written as product states of the logical
qubit and the ancilla qubits, and hence show that measuring the ancillas has no effect
on the logical qubit.

8. Give explicit forms for the error correcting steps in the three qubit spin flip error cor-
recting network (that is, what correction operators shouldbe applied for each correction
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outcome). Show how this process can be replaced by quantum control (replacing mea-
surements and optional gates by conditional logic gates); state two disadvantages of this
latter approach.

9. What happens to a classical bit protected with a three bit code if two bit flip errors
occur? What happens in the quantum case?

10. Consider a single qubit which starts in the pure state|ψ〉 = α|0〉+β|1〉 and then undergoes
one of two sorts of decoherence: (a) a rotation around thez-axis through an angle of
eitherφ or−φ, chosen at random; (b) experiencing a Z gate with probability p or being
left alone with probability 1− p. Show that the density matrix description of these two
cases is fundamentally the same, and determine the relationship betweenp andφ.

9. More advanced quantum algorithms

1. Consider a Deutsch–Jozsa problem withn = 2: how many possible functions are there,
and how many are constant and how many are balanced? Assumingthat an unknown
function is known to be either constant or balanced with 50% probability, calculate the
minimum, maximum, and average number of queries required todetermine which sort
of function it is on a classical computer. What about a quantum computer?

10. Trapped atoms and ions

1. Write down the potential energy function for a group of ions (each of massM and
charge+e) in a linear Paul trap, with strong radial and weak axial confinement. You
may assume that the trap potentials are harmonic.

2. What effect does the motion of an ion have on its spectral lines if the ions is travelling
in free space? What changes if the ion is confined in a harmonictrap?

3. Draw a quantum network based on the the collisional phase gate

Uφ =

































1 0 0 0
0 e−iφ 0 0
0 0 1 0
0 0 0 1

































to implement a controlled-not gate with the first qubit as control and the second qubit
as target.

4. Show that the collisional phase gateUπ can be written as|0〉〈0| ⊗ Z + |1〉〈1| ⊗ 1. Hence
show that the “massive entanglement” state of a system of twoatoms can be written as

(|0〉Z + |1〉) (|0〉 + |1〉)

neglecting normalisation. How would you write the equivalent state for three atoms?
Multiply this out to show that you agree with the result

|000〉 H(3)

−→
Uπ−→ |+〉|0〉|−〉 − |−〉|1〉|+〉√
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11. Nuclear magnetic resonance

1. Estimate the strength of the magnetic field gradient required to make two1H nuclei in
a molecule (assume a separation of about 1 Å) have Larmor frequencies differing by
about 100 Hz. Would it be possible to obtain a gradient of thissize?

2. Show that a Heisenberg coupling in a two spin system can be approximated by an Ising
coupling as long as|ω12| ≪ |ω1 − ω2|.

3. Draw an explicit network of gates to implement a controlled-not gate in a two spin
system, using only standard single qubit gates and the gateU(t) which corresponds to
free evolution under the system’s Hamiltonian for a timet. Draw an implementation of
anot gate that takes the same length of time.

4. Consider a system of three coupled spins. Write down the Hamiltonian and then design
a spin echo sequence such that the average Hamiltonian is reduced to a single coupling
term between the second and third spins.

5. Return to a one spin system, and design a spin echo style sequence which will reduce the
spin’s apparent Larmor frequency to one half of its true value. Is it possible to change
the sign of a spin’s apparent Larmor frequency? What are the limits on the possible
range of scalings? Can coupling strengths be rescaled in thesame way?


