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Quantum information: exercises and

problems

These exercises are closely based on those in the forthcoming book by Jones and Jaksch,
and the numbering of sections follows the order in that book.In a few cases the exercises
have been slightly rewritten so they stand alone.These exercises are intended for self study
and worked answers are provided on the course website; you are very strongly advised to
make a serious attempt at all these exercises rather than just looking up the answer! If
anything is still unclear ask your class tutor; it is probably best to let him know before the
class.

The last section contains the threeproblems which will form the bulk of the class ma-
terial; two are taken from finals papers and one from the mock paper. Links to these three
problems are available on the course website; worked answers arenot provided.

1. Quantum bits and quantum gates

1. Show that if|ψ〉 = cos(θ/2)|0〉 + sin(θ/2)eiφ|1〉 then

|ψ〉〈ψ| = 1
2

(

σ0 + sx σx + sy σy + sz σz

)

.

Show thats = (sx, sy, sz) (the Bloch vector) has unit length, and so|ψ〉〈ψ| can be repre-
sented by a point on the unit sphere (Bloch sphere).

2. Show that any mixed state of a single qubit can be written asa pointin the Bloch sphere.
What point does12σ0 correspond to?

3. Show thatσ2
α = σ0, whereσα are the usual Pauli matrices, withα equal tox, y, or z.

Hence use a series expansion to show that exp(−iθ σα/2) = cos(θ/2)σ0 − i sin(θ/2)σα
without diagonalizing any matrices.

4. Using matrix propagators show that the Hadamard gate can be implemented as 90◦y 180◦x
(where rotations are written from left to right; note that propagators must be applied
from right to left). Show that other possible implementations include 180◦x 90◦−y, 90◦−y 180◦z ,
and 180◦z 90◦y .

5. We have used matrices to show that HZH= X; now show that HXH= Z without
multiplying matrices.

6. Rewrite the general state of a qubit|ψ〉 = α|0〉 + β|1〉 in the X-basis (that is as a su-
perposition of|+〉 and |−〉). Show that the result of an X-measurement on this state is
identical to the effect of applying a Hadamard gate, performing a Z-measurement, and
then applying another Hadamard gate.

7. Explainwhy the result of the previous question works, and why any singlequbit mea-
surement gate can be achieved by combining unitary transformations with a Z-measurement.
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2. An atom in a laser field

1. Explain why the selection rules derived for hydrogen atoms can also be applied to ions
with a single electron in their outer shell, such as Ca+.

2. Consider the possibility of using the2S1/2 and2P1/2 to encode a qubit in40Ca+ ions.
For simplicity we assume that the matrix element〈z〉 = 〈ψi|z|ψ f 〉 ∼ a0 for allowed tran-
sitions, and is zero for forbidden transitions. Calculate the spontaneous decay time of
this transition using 1/Γ = (3πǫ0~c3)/(ω3e2〈z〉2), and estimate the electric field strength
needed to perform Rabi flopping on this transition using a resonant oscillating electric
field.

3. Suppose we tried to excite this transition by brute force,using a very large jump in a
static electric field. Estimate the field strength required to make this work, and comment
on your result.

4. Estimate the limiting spatial resolution in this system (you may assume the Abbe limit).

5. Comment on the expected excited state population at 300 K.

6. The peak electric field in a laser beam can be calculated using Ep = 2
√

Pcµ0/A, where
P is the power of the laser andA is the cross sectional area of the beam. Estimate the
laser power required to perform Rabi flopping assuming the laser beam is focused to a
uniform spot with a diameter given by the Abbe limit.

3. Spins in magnetic fields

1. A typical modern NMR spectrometer has a main magnetic fieldstrength of about 12 T,
resulting in a1H Larmor frequency of about 500 MHz, while an RF pulse causinga 90◦

rotation will typically last around 6µs. Calculate the strength of theoscillating magnetic
field component of the RF field.

2. Calculate the energy gap between the two spin states of a1H in the system discussed
above. Assuming a Boltzmann distribution between the two energy states, what are the
probabilities of finding a given nucleus in the two states at atemperature of 300 K?

3. Suppose an NMR sample contains 0.2 ml of water at 300 K: what is the excess number
of spins in the lower energy state? What temperature is required to place 99% of the
spins in the lower energy state?

4. As implied above, a typical NMR sample is a moderately large object (several mm
in each direction), containing many identical copies of thesame spin. If the magnetic
field is different at each spin then the Larmor frequency will also vary, giving rise to
inhomogeneous broadening. Suppose the natural NMR linewidth is around 1 Hz, which
is reasonable: how much variation in the field can we tolerate? Is this practical?

5. There are many different sequences which can be classified as spin echoes, differing
only in fine details. Confirm thatφz 180x φz ≡ 180x, and show thatφz 180x 2φz 180x φz

is equivalent to the identity. Similarly show thatφz 180x φz 180x and 180x φz 180x φz are
also equivalent to the identity. What about 180y φz 180y φz and 180x φz 180y φz?
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4. Photon techniques

1. We have already explored some of the properties of birefringent wave plates, with a
particular emphasis on quarter wave plates (φ = π/2). Now evaluate the unitary trans-
formation performed by a half wave plate, and show how this can be used to implement
not gates and Hadamard gates directly.

2. Show that the coherent state|α〉 is correctly normalised. Find as a function of|α| the
fraction of laser pulses containing at least one photon, andthe fraction of such pulses
containing exactly one photon. Hence confirm the results forα =

√
0.1 given in the

text.

5. Two qubits and beyond

1. Show that a controlled-not gate can be built out of Hadamard gates and a controlled-σz

gate without using explicit matrices in your argument.
2. Use the “bitwise addition modulo 2” description of the controlled-not gate to show that

a network of three controlled-not gates will swap the values of two qubits in eigenstates.
Hence show that this network acts as aswap gate for any separable state of two qubits.

3. Calculate an explicit matrix form for theswap gate. What does this gate do to a pair of
qubits in a Bell state? Why is this answer not surprising?

4. Find explicit expressions for the four computational basis states of a two qubit system
in terms of superpositions of the four Bell states.

5. Show that the entangling network shown in equation?? can be used to produce all four
Bell states by using different initial states for the input qubits.

6. How can the four Bell states be converted into four distinguishable states in the compu-
tational basis?

6. Measurement and entanglement

1. Suppose I make a beam of vertically polarized light, and pass it through an ideal piece
of polaroid film with a vertical axis. The light beam will be completely transmitted.
Now suppose I put a second polarizer after the first one, at an angleθ; the transmitted
fraction will drop to cos2 θ, with no transmission occurring at 90◦ (the Law of Malus).
Now suppose I use two ideal polarizers after the first one, at angles of 45◦ and 90◦:
what will be the transmitted fraction in this case? Now suppose I use a sequence ofn
polarizers, equally spaced up to 90◦ (so that for the casen = 3 the first polarizer is at
0◦ and the next three are at 30◦, 60◦ and 90◦ respectively). What is the transmission for
general values ofn? What is the value in the limitn→ ∞?

2. Suppose Alice and Bob share an entangled pair of qubits in the state|ψ−〉. Find local
operations that Bob can use to convert this to the other threeBell states.

3. It can be shown that any single qubit gate can be constructed out of a suitable network
of Hadamard gates and T=

√
S=

4√
Z gates. Use this fact to prove that the singlet state

|ψ−〉 is unaffected by any bilateral unitary operation.
4. If two qubits in the Bell state|ψ−〉 are measured in the computational basis they will

always disagree. Use the result of the previous exercise to show that the same property
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holds for|ψ−〉 if the two qubits are measured in thesame basis, whatever basis is chosen.
Does this work for the other three Bell states?

5. A pure state is said to be separable (and therefore not entangled) if it can be written
as a direct product of single qubit states; a mixed state is said to be separable (and
therefore not entangled) if it can be written as a mixture of separable pure states. Now
suppose that Alice and Bob start with a pair of qubits in the separable state|0〉|0〉, and
that they try to create an entangled state by LOCC. Inspired by the standard network,
Alice applies a Hadamard to her qubit and then measures it; ifshe gets a|0〉 she does
nothing, but if she gets a|1〉 she tells Bob to apply anot gate to his qubit. Find the
resulting state, and show that it is not entangled. What is the state fidelity between the
resulting state and each of the four Bell states? Can you describe the resulting state as a
mixture of Bell states?

Problems

Please answer the following finals questions from C2 papers

1. Mock paper question 5
2. 2007 paper question 5
3. 2008 paper question 5

and hand these in for marking as arranged by your class tutor.Links to these questions can
be fond on the course website. Other questions you should be able to attempt at this stage
are 2005 Q5, 2009 Q5, and 2010 Q5 (except the last part).


