Answers: quantum information

1. Quantum bits and quantum gates
1. This follows by direct matrix calculation
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As sis a unit vector, it connects the origin with a point on thetsphere.

2. A mixed state has the form = Y, Pnlyn){¥nl whereP, > 0 and}, P, = 1. Each
contributing density matrix can be described by a Blochaeahd so the mixed state
can also be represented by a vedar Y, Pns:. As all thes, are of unit length, the
weighted sum has a length of at most 1 (which only occurs wheheaP, except one
are zero). Thus the mixed state vector ligsde the unit sphere (the Bloch sphere). The
point %0‘0 corresponds to the centre of the Bloch sphere. This isrtdeémally mixed
State.

3. By direct multiplicationr2 = oo and similarly foroy ando,. Now
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4. Using methods from above we note that the propagator fpis96- — ioy)/ V2, while
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that for 18Q is —iox. Then use brute force multiplication (note the order!)

Al dle 3l )

which is the Hadamard gate (up to an irrelevant global phd$e) other three are done
in the same way.

. HoyH =H (Ho;H)H = (HH) 0z (HH) = 101 = 0.

. Reversing the definitions ¢f) and|-) gives|0) = (|+) + |-))/ V2 and|1) = (+) —

I-))/ V2, so
) = (%3) ) + (%)I—)

and making an X-measurement returAsor |-) with probabilities

]

w5l )=l

and making a Z-measurement giyes or |1) with probabilities as above; applying a
final Hadamard gate simply converts thesg¢Hoand|—) with the same probabilities.

. The first Hadamard gate rotates the two eigenstates of-theasurement onto the two
eigenstates of a Z-measurement. Any single qubit measutenik have two eigen-
states which lie at diametrically opposed points on the Blgghere and which can be
rotated ontd0) and|1) in the same way. As rotation gates are unitary the will alsdwo
with superposition states. Equivalently we can think oftayi gates as rotating oper-
ators rather than states: surrounding a Z-measurementgiater pair of Hadamard
gates is equivalent to rotating it into a Z-measurement.

Alternatively we have

2. An atom in a laser field

. In systems of this kind the single outer electron can badhbof as moving in a cen-
tral field, although the form of this field will be much more cplex than the simple
Coulomb field found in hydrogen, and so the wavefunction still be separable into
radial and angular parts. As the selection rules only releniain angular integrals
being zero they will be urfiected by the changes to the radial parts.

. Inserting the numbers givegll~ 31 ns. To achieve Rabi flopping we nééd> T, and
usingE = hV/age givesk > 400V for therotating field; double this for the oscillating
field. In reality the lifetime is about 7 ns, and the field mustlarge compared with
5000 V/m.

. Sudden jumps are onlyfective whenV 2 wo or EZ2rhc/eapd, and putting the num-
bers in give€>6x10'°V/m, which is too large to generate as a static field (breakdown
will occur). Even if you could produce the field it would causany other transitions
as well.
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. The Abbe limit is1/2 ~ 200 nm (realistic systems are often around an order of magni-
tude worse than this).

. For the excited state population, compare the energygagc/A ~ 5 x 107°J with

ksT ~ 4.1 x 10721 J at 300 K; clearly the excited state population will be ngiple.

. To get a peak electric field strength of 800n/in a spot of diameter 200 nm requires a
power of 13 pW; the surprisingly low power requirement ldygeflects the tiny size of
the laser spot. This calculations is fairly unrealistichas to the field strength required
and the spot size achievable: using more realistic numi&&a®0 \/m and a diameter

of 10um gives a power of gW. Significantly larger powers are used in real quantum
computers as this enables Raman transitions to be usedfaré&sonance.

3. Spins in magnetic fields

. This can be worked out by brute force but it is simpler jostescale the field. If a 90
rotation lasts @s then a 36Drotation lasts 24s, and the rotation rate is 9@®4 Hz.
Divide this by 500 MHz and multiply by 12 T to get 1 mT or 10 GauBat this is the
strength of theotating field, and we want the oscillating field, so double this to get
2mT or 20 Gauss.

. UsingE = hy with v = 500 MHz gives an energy gap of333x 102°J or 2ueV.
Compare this withkgT at 300K which is 4142x 10721J, so the two states will be
very nearly equally occupied. A Boltzmann calculation gi¥ectional populations of
0.50002 and 0.49998, with an excess fractional populafidnol10-°.

. In a sample of @ ml of water there are about2)18 moles of water, which is.8 x
10°! molecules, but each molecule has two hydrogen atoms, givB#x 10?2 nuclei.
Thus the excess population i35 x 10’ spins. For the last bit, solve the Boltzmann
equation to discover that 99% population in the lower statgiireshv/kgT = 4.595 or

a temperature of 5mK.

. The answer depends on what is meant by “tolerate”, butaagfhat we insist that
the inhomogeneous broadening can be no more than 50% asatige homogeneous
broadening, that is.B Hz. To achieve this at a frequency ab@Hz requires a field
homogeneous to one part in L (Reaching this limit is dficult and expensive, but
possible over small regions of space.

. Begin by finding the propagators for the underlying gates

e¥? 0 (0 1 0 -1
w-(To ) w0--il g w07 )
and the first result is shown by direct multiplication
(e?2 0 \(0 1\(e*2 0
¢zlaox¢z=_.( ) é¢/z)(1 0)( ; éM)

ez 0 \(d42 0 (0 1
:”(o &4(0 eWJ:”ﬁ J

which is identical to 18Q The propagator for the second spin echo sequence is just
the square of the above, andi¢y)® = —1, which is the identity up to a global phase.
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The third and fourth sequences give the same result. Diratiipiication shows that
changing the phase of both 180 pulses hasffezt but changing just one of them gives
—io2, which is a 18@rotation. In general using 180 pulses separated by a phase an
is equivalent to performing arotation through twice that angle.

4. Photon techniques
. We have the general form for a wave plate

cog 6 + sirf 66’  cosdsing(l - ei"’))

U(Hv ¢) = (COS@ S|n9(1 — e|¢) COS2 He'd) + S|n2 6

and a half wave plate correspondste: = so

V() = cogf-sifd  2cossing | _(cos(B) sin()
=\ 2cos9sing —cof6 +sirfe) ~ \sin(@®) - cos(@)

Now choosing 8 = n/2 givesU(nr/4,7) = (2 1) which is anor gate, while choosing

0
20 = /4 gives

11 1
U(ﬂ/S,ﬂ)Zﬁ(l _1)

which is a Hadamard gate.
. As the number states are all orthonormal we have

Ll * \N
(ala) = eoF Z @) _ gl grlal® = 1
I
il

andP(n) = e7°"||?/n!. HenceP(0) = e, P(1) = |a|?P(0) andP(n > 0) = 1 - P(0).
Thus if a laser pulse contains at least one photon then tHeapility that it contains
exactly one photon is

|a|2€f\a\2
1— gl
and fora = V0.1 we getP(0) = 0.9048,P(1) = 0.0905, andP(n = 1jn > 0) = 0.9508.

P(n=1n>0)=

5. Two qubits and beyond

. Start by writing the controlleder gate a$0){0|®1+|1){1|®X. Then note that X= HZH,

and thatl can be written as #HH. Finally factor out the common Hadamard gate to
leave (L@ H) - (|00 1 +|1){1|® Z) - (1 ® H) as desired.

. Startfrom a general eigenstégb) and follow through the sequence to three controlled-
NoT gates in turn usingdasb = 0db = b to simplify terms:

|ay|by — |aylasb) — |ad(adb))|ladb) = |b)ladh) — |b)|(adb)eb) = |b)|a). (1.2)

The final part follows immediately from the linearity of uaiiy operations. This is nor-
mally thought of as swapping amplitudes between the twotgubit it is often better
to think of this process as swapping the labels identifyhrgttvo qubits.
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. The matrix form of thawar gate

1
0
0 (1.2)

= O O
O O
o

0 0O

can be obtained either by matrix multiplication or by notaigectly that it swap$01)
and|10) and leave$00) and|11) alone. Explicit calculation shows that thear gate
leaves three Bell states entirely difegted, except that the singlet state) picks up a
global phase factor of1. The result is not surprising as the Bell states are synienetr
or antisymmetric states of the two qubits as a whole, not efitildividual qubits, and
so should not beffected by swapping the labels of the qubits. The global phisé o
for ) occurs because this state is antisymmetric under the egetamubit labels.

. The explicit forms are

o) +1¢7) lo*) —lo™)
00y = ——+— 1) = ————~ 1.3
00 V2 I V2 (13)
) + ™) ) =)
opy=-----""=7 100="—~—- "7 1.4
b V2 1o V2 (1.4)

Just as superpositions of separable states can be entasgkagperpositions of entan-
gled states can be separable.

. Direct calculation shows that starting fraf}|0) gives|¢~). Similarly starting from
|0)|1) and|1)|1) gives|yt) and|y~) respectively.

. Simply apply the gates in the entangling network in rexengler to dis-entangle the
states. This works because both controled-and H are self-inverse; in general you
would have to use inverse gates as well as reversing the. order

6. Measurement and entanglement

. For the case of two polarizers the transmitted fractioedsr/4))* = 1/4. This gen-
eralizes in the obvious way to (cagen))?", and in the infinite limit the transmitted
fraction goes to one. Note that there is no loss at the firsirjzgr as we are using
pre-aligned light. We are, of course, assuming perfectrizaes throughout.

. Ignoring global phases a Z gate will tugn into y*, while an X gate will turn it into
¢~. To obtaing* either apply both X and Z gates in either order, or note thatdbm-
bination is equivalentto V.

. Clearly it sdfices to show thay~ is undfected by bilateral Hadamards and T gates
(H® Hand T® T). These are easily shown by direct calculation.

. Measurementin any basis can be achieved by applying sutaten to the qubit before
and after the measurement, and if the measurement basdwaame for each qubit
then the rotations must be the same for each qubit. But tlasitateral rotation, and
we have just shown that~) is invariant under bilateral rotations. The final staterafte
the measurement will beffected by the second bilateral rotation, but this does not
affect the outcome of the measurements. This argument doesanktfer the other
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four Bell states as they are not invariant under bilateritions: for examplép*) are
interconverted by bilateral T gates, whjle') and|y*) are interconverted by bilateral
Hadamard gates.

. There are many ways to argue this, all of which are essigntiguivalent. After Alice
applies her Hadamard her qubit will be in the sta® 4 |1))/ V2; she then makes her
measurement and the state decoheres to the mixed g € |1)(1])/2. This is all
local to Alice, so Bob’s qubit is still in the stat®) and we can describe the whole
system by the direct product

30100 +11)(1)) ® [0)0l = 3(100)00| + |10)(10)). (1.5)

Finally we consider thefect of Alice talking to Bob: if she go0) then Bob does
nothing and the state remail@){0Q}; if she got|1) then Bob applies aor gate to his
qubit, converting10)(10 into |11){11]. Thus the final state i§(|00)<00|+|11>(11|). This
superficially looks likdg*){¢*|, but writing it out in matrix form

0 0O
0

00 0
0 o o (1.6)
003

O O ONI-

0

we see thatitis notthe same. Indeed it is obviously not gi¢aas the forn§(|00)<00|+
[11)(11]) is a mixture ofil00) and|11), that is a mixture of two separable states.
State fidelities are easy to obtain by direct multiplicatimn |¢*) we get

100 o1
1 0 0 0 ofo
E(lool)ooooo (.7)
0 0 031

which is % and the same result is found flgr). The fidelity with |*) is found to
be zero. This suggests that we can write the statg|¢$)(¢+| + ¢~ X¢7]), and this is
indeed the case. Thus a mixture of entangled states neee reoténgled.



