
1 Answers: quantum information

1. Quantum bits and quantum gates

1. This follows by direct matrix calculation

|ψ〉〈ψ| =
(

cos(θ/2)
sin(θ/2)eiφ

)

(

cos(θ/2) sin(θ/2)e−iφ
)

=

(

cos2(θ/2) sin(θ/2) cos(θ/2)e−iφ

sin(θ/2) cos(θ/2)eiφ sin2(θ/2)

)

=
1
2

(

cosθ + 1 sinθ(cosφ − i sinφ)
sinθ(cosφ + i sinφ) − cosθ + 1

)

=
1
2

(

1 0
0 1

)

+
cosθ

2

(

1 0
0 −1

)

+
sinθ cosφ

2

(

0 1
1 0

)

+
sinθ sinφ

2

(

0 −i
i 0

)

= 1
2

(

σ0 + sx σx + sy σy + sz σz

)

with sx = sinθ cosφ, sy = sinθ sinφ, andsz = cosθ. Thus

s.s = sin2 θ cos2 φ + sin2 θ sin2 φ + cos2 θ = 1

As s is a unit vector, it connects the origin with a point on the unit sphere.
2. A mixed state has the formρ =

∑

n Pn|ψn〉〈ψn| wherePn ≥ 0 and
∑

n Pn = 1. Each
contributing density matrix can be described by a Bloch vector and so the mixed state
can also be represented by a vectors =

∑

n Pnsn. As all thesn are of unit length, the
weighted sum has a length of at most 1 (which only occurs when all the Pn except one
are zero). Thus the mixed state vector liesinside the unit sphere (the Bloch sphere). The
point 1

2σ0 corresponds to the centre of the Bloch sphere. This is themaximally mixed
state.

3. By direct multiplicationσ2
x = σ0 and similarly forσy andσz. Now

exp(−iθ σα/2) = σ0 +

(

−iθ/2
1

)

σα +

(

(−iθ/2)2

2

)

σ2α +

(

(−iθ/2)3

3!

)

σ3α + . . .

= σ0 − i

(

θ/2
1

)

σα −
(

(θ/2)2

2

)

σ0 − i

(

(−θ/2)3

3!

)

σα + . . .

= σ0

(

1−
(θ/2)2

2
+ . . .

)

− iσα

(

θ/2−
(θ/2)3

3!
+ . . .

)

= σ0 cos(θ/2)− iσα sin(θ/2)

4. Using methods from above we note that the propagator for 90y is (σ0 − iσy)/
√

2, while

1
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that for 180x is −iσx. Then use brute force multiplication (note the order!)

−i
√

2

(

0 1
1 0

) (

1 −1
1 1

)

=
−i
√

2

(

1 1
1 −1

)

which is the Hadamard gate (up to an irrelevant global phase). The other three are done
in the same way.

5. HσxH = H (HσzH) H = (HH)σz (HH) = 1σz1 = σz.
6. Reversing the definitions of|+〉 and |−〉 gives |0〉 = (|+〉 + |−〉)/

√
2 and|1〉 = (|+〉 −

|−〉)/
√

2, so

|ψ〉 =
(

α + β
√

2

)

|+〉 +
(

α − β
√

2

)

|−〉

and making an X-measurement returns|+〉 or |−〉 with probabilities

P+ =

(

α + β
√

2

)2

P− =

(

α − β
√

2

)2

.

Alternatively we have

H|ψ〉 =
1
√

2

(

1 1
1 −1

) (

α

β

)

=
1
√

2

(

α + β

α − β

)

and making a Z-measurement gives|0〉 or |1〉 with probabilities as above; applying a
final Hadamard gate simply converts these to|+〉 and|−〉 with the same probabilities.

7. The first Hadamard gate rotates the two eigenstates of the X-measurement onto the two
eigenstates of a Z-measurement. Any single qubit measurement will have two eigen-
states which lie at diametrically opposed points on the Bloch sphere and which can be
rotated onto|0〉 and|1〉 in the same way. As rotation gates are unitary the will also work
with superposition states. Equivalently we can think of unitary gates as rotating oper-
ators rather than states: surrounding a Z-measurement gatewith a pair of Hadamard
gates is equivalent to rotating it into a Z-measurement.

2. An atom in a laser field

1. In systems of this kind the single outer electron can be thought of as moving in a cen-
tral field, although the form of this field will be much more complex than the simple
Coulomb field found in hydrogen, and so the wavefunction willstill be separable into
radial and angular parts. As the selection rules only rely oncertain angular integrals
being zero they will be unaffected by the changes to the radial parts.

2. Inserting the numbers gives 1/Γ ≈ 31 ns. To achieve Rabi flopping we needV ≫ Γ, and
usingE = ~V/a0e givesE ≫ 400 V for therotating field; double this for the oscillating
field. In reality the lifetime is about 7 ns, and the field must be large compared with
5000 V/m.

3. Sudden jumps are only effective whenV & ω0 or E&2π~c/ea0λ, and putting the num-
bers in givesE&6×1010V/m, which is too large to generate as a static field (breakdown
will occur). Even if you could produce the field it would causemany other transitions
as well.
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4. The Abbe limit isλ/2 ≈ 200 nm (realistic systems are often around an order of magni-
tude worse than this).

5. For the excited state population, compare the energy gapE = hc/λ ≈ 5× 10−19 J with
kBT ≈ 4.1× 10−21 J at 300 K; clearly the excited state population will be negligible.

6. To get a peak electric field strength of 800 V/m in a spot of diameter 200 nm requires a
power of 13 pW; the surprisingly low power requirement largely reflects the tiny size of
the laser spot. This calculations is fairly unrealistic, both as to the field strength required
and the spot size achievable: using more realistic numbers of 10000 V/m and a diameter
of 10µm gives a power of 5µW. Significantly larger powers are used in real quantum
computers as this enables Raman transitions to be used far from resonance.

3. Spins in magnetic fields

1. This can be worked out by brute force but it is simpler just to rescale the field. If a 90◦

rotation lasts 6µs then a 360◦ rotation lasts 24µs, and the rotation rate is 106/24 Hz.
Divide this by 500 MHz and multiply by 12 T to get 1 mT or 10 Gauss. But this is the
strength of therotating field, and we want the oscillating field, so double this to get
2 mT or 20 Gauss.

2. Using E = hν with ν = 500 MHz gives an energy gap of 3.313× 10−25 J or 2µeV.
Compare this withkBT at 300 K which is 4.142× 10−21 J, so the two states will be
very nearly equally occupied. A Boltzmann calculation gives fractional populations of
0.50002 and 0.49998, with an excess fractional population of 4 × 10−5.

3. In a sample of 0.2 ml of water there are about 0.2/18 moles of water, which is 6.7 ×
1021 molecules, but each molecule has two hydrogen atoms, giving1.34× 1022 nuclei.
Thus the excess population is 5.35× 1017 spins. For the last bit, solve the Boltzmann
equation to discover that 99% population in the lower state requireshν/kBT = 4.595 or
a temperature of 5 mK.

4. The answer depends on what is meant by “tolerate”, but suppose that we insist that
the inhomogeneous broadening can be no more than 50% as largeas the homogeneous
broadening, that is 0.5 Hz. To achieve this at a frequency of 0.5 GHz requires a field
homogeneous to one part in 109. Reaching this limit is difficult and expensive, but
possible over small regions of space.

5. Begin by finding the propagators for the underlying gates

φz =

(

e−iφ/2 0
0 eiφ/2

)

180x = −i

(

0 1
1 0

)

180y =

(

0 −1
1 0

)

and the first result is shown by direct multiplication

φz 180x φz = −i

(

e−iφ/2 0
0 eiφ/2

) (

0 1
1 0

) (

e−iφ/2 0
0 eiφ/2

)

= −i

(

e−iφ/2 0
0 eiφ/2

) (

eiφ/2 0
0 e−iφ/2

)

= −i

(

0 1
1 0

)

which is identical to 180x. The propagator for the second spin echo sequence is just
the square of the above, and (−iσx)2 = −1, which is the identity up to a global phase.
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The third and fourth sequences give the same result. Direct multiplication shows that
changing the phase of both 180 pulses has no effect, but changing just one of them gives
−iσz, which is a 180z rotation. In general using 180 pulses separated by a phase angle
is equivalent to performing az-rotation through twice that angle.

4. Photon techniques

1. We have the general form for a wave plate

U(θ, φ) =

(

cos2 θ + sin2 θeiφ cosθ sinθ(1− eiφ)
cosθ sinθ(1− eiφ) cos2 θeiφ + sin2 θ

)

and a half wave plate corresponds toφ = π so

U(θ, π) =

(

cos2 θ − sin2 θ 2 cosθ sinθ
2 cosθ sinθ − cos2 θ + sin2 θ

)

=

(

cos(2θ) sin(2θ)
sin(2θ) − cos(2θ)

)

Now choosing 2θ = π/2 givesU(π/4, π) =

(

0 1
1 0

)

which is anot gate, while choosing

2θ = π/4 gives

U(π/8, π) =
1
√

2

(

1 1
1 −1

)

which is a Hadamard gate.
2. As the number states are all orthonormal we have

〈α|α〉 = e−|α|
2
∞
∑

n=0

(α∗α)n

n!
= e−|α|

2
e+|α|

2
= 1

andP(n) = e−|α|
2 |α|2n/n!. HenceP(0) = e−|α|

2
, P(1) = |α|2P(0) andP(n > 0) = 1− P(0).

Thus if a laser pulse contains at least one photon then the probability that it contains
exactly one photon is

P(n = 1|n > 0) =
|α|2e−|α|2

1− e−|α|2

and forα =
√

0.1 we getP(0) = 0.9048,P(1) = 0.0905, andP(n = 1|n > 0) = 0.9508.

5. Two qubits and beyond

1. Start by writing the controlled-notgate as|0〉〈0|⊗1+|1〉〈1|⊗X. Then note that X= HZH,
and that1 can be written as H1H. Finally factor out the common Hadamard gate to
leave (1 ⊗ H) · (|0〉〈0| ⊗ 1 + |1〉〈1| ⊗ Z) · (1 ⊗ H) as desired.

2. Start from a general eigenstate|a〉|b〉 and follow through the sequence to three controlled-
not gates in turn usinga⊕a⊕b = 0⊕b = b to simplify terms:

|a〉|b〉 → |a〉|a⊕b〉 → |a⊕(a⊕b)〉|a⊕b〉 = |b〉|a⊕b〉 → |b〉|(a⊕b)⊕b〉 = |b〉|a〉. (1.1)

The final part follows immediately from the linearity of unitary operations. This is nor-
mally thought of as swapping amplitudes between the two qubits, but it is often better
to think of this process as swapping the labels identifying the two qubits.
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3. The matrix form of theswap gate
































1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

































(1.2)

can be obtained either by matrix multiplication or by notingdirectly that it swaps|01〉
and |10〉 and leaves|00〉 and |11〉 alone. Explicit calculation shows that theswap gate
leaves three Bell states entirely unaffected, except that the singlet state|ψ−〉 picks up a
global phase factor of−1. The result is not surprising as the Bell states are symmetric
or antisymmetric states of the two qubits as a whole, not of the individual qubits, and
so should not be affected by swapping the labels of the qubits. The global phase of −1
for |ψ−〉 occurs because this state is antisymmetric under the exchange of qubit labels.

4. The explicit forms are

|00〉 = |φ
+〉 + |φ−〉
√

2
|11〉 = |φ

+〉 − |φ−〉
√

2
(1.3)

|01〉 = |ψ
+〉 + |ψ−〉
√

2
|10〉 = |ψ

+〉 − |ψ−〉
√

2
(1.4)

Just as superpositions of separable states can be entangled, so superpositions of entan-
gled states can be separable.

5. Direct calculation shows that starting from|1〉|0〉 gives |φ−〉. Similarly starting from
|0〉|1〉 and|1〉|1〉 gives|ψ+〉 and|ψ−〉 respectively.

6. Simply apply the gates in the entangling network in reverse order to dis-entangle the
states. This works because both controlled-not and H are self-inverse; in general you
would have to use inverse gates as well as reversing the order.

6. Measurement and entanglement

1. For the case of two polarizers the transmitted fraction is(cos(π/4))4 = 1/4. This gen-
eralizes in the obvious way to (cos(π/2n))2n, and in the infinite limit the transmitted
fraction goes to one. Note that there is no loss at the first polarizer as we are using
pre-aligned light. We are, of course, assuming perfect polarizers throughout.

2. Ignoring global phases a Z gate will turnψ− into ψ+, while an X gate will turn it into
φ−. To obtainφ+ either apply both X and Z gates in either order, or note that this com-
bination is equivalent to Y.

3. Clearly it suffices to show thatψ− is unaffected by bilateral Hadamards and T gates
(H ⊗ H and T⊗ T). These are easily shown by direct calculation.

4. Measurement in any basis can be achieved by applying some rotation to the qubit before
and after the measurement, and if the measurement bases are the same for each qubit
then the rotations must be the same for each qubit. But this isa bilateral rotation, and
we have just shown that|ψ−〉 is invariant under bilateral rotations. The final state after
the measurement will be affected by the second bilateral rotation, but this does not
affect the outcome of the measurements. This argument does not work for the other
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four Bell states as they are not invariant under bilateral rotations: for example|φ±〉 are
interconverted by bilateral T gates, while|φ−〉 and |ψ+〉 are interconverted by bilateral
Hadamard gates.

5. There are many ways to argue this, all of which are essentially equivalent. After Alice
applies her Hadamard her qubit will be in the state (|0〉 + |1〉)/

√
2; she then makes her

measurement and the state decoheres to the mixed state (|0〉〈0| + |1〉〈1|)/2. This is all
local to Alice, so Bob’s qubit is still in the state|0〉 and we can describe the whole
system by the direct product

1
2(|0〉〈0| + |1〉〈1|) ⊗ |0〉〈0| = 1

2(|00〉〈00| + |10〉〈10|). (1.5)

Finally we consider the effect of Alice talking to Bob: if she got|0〉 then Bob does
nothing and the state remains|00〉〈00|; if she got|1〉 then Bob applies anot gate to his
qubit, converting|10〉〈10| into |11〉〈11|. Thus the final state is12(|00〉〈00|+ |11〉〈11|). This
superficially looks like|φ+〉〈φ+|, but writing it out in matrix form

































1
2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

2

































(1.6)

we see that it is not the same. Indeed it is obviously not entangled as the form1
2(|00〉〈00|+

|11〉〈11|) is a mixture of|00〉 and|11〉, that is a mixture of two separable states.
State fidelities are easy to obtain by direct multiplication: for |φ+〉 we get

1
2

(

1 0 0 1
)

































1
2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

2

































































1
0
0
1

































(1.7)

which is 1
2, and the same result is found for|φ−〉. The fidelity with |ψ±〉 is found to

be zero. This suggests that we can write the state as1
2(|φ+〉〈φ+| + |φ−〉〈φ−|), and this is

indeed the case. Thus a mixture of entangled states need not be entangled.


