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The Information Age 

Shannon Turing 

which is wrong “…because Nature isn’t classical 

dammit!” (Feynman) 

Computation Communication 

Current approaches are essentially classical 



Classical Information 

 Classical information is made up of bits, 

which can be in either of two states, 0 and 1 

 

 Bits can (in principle) be measured perfectly 

 Bits can be measured without disturbance 

 Bits can be copied without restriction 

 Local manipulations cannot affect other 

distant bits 



Qubits 

 Bits can be mapped to the eigenstates |0 and 

|1 of a two state quantum system (a qubit) 

 If a qubit is confined to its eigenstates then it 

behaves much like a classical bit 

 But qubits are not confined to eigenstates: 

they can exist in superpositions of these 

states opening up entirely new forms of 

information processing! 



Quantum Information 

 Qubits can be superpositions of two 
different states at the same time 

 Qubits cannot be measured perfectly 

 Qubits cannot be measured without 
disturbance 

 Qubits cannot be copied 

 Local manipulations on one qubit can 
affect other distant qubits 



Quantum “technologies” 

 Quantum Communication: quantum dense 

coding, quantum cryptography, quantum 

teleportation (Trinity) 

 

 Quantum Computing: surpassing the classical 

limits (Michaelmas 8/Hilary) 

 

 Quantum Mechanics: insights into the 

foundations of quantum theory 



Qubits & quantum registers  
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Quantum parallel processing 



Exponential power 

 Qubits 

 1 

 2 

 4 

 8 

 16 

 32 

 64 

 128 

 Computations 
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 16 

 256 

 65536 

 4.29109 

 1.84 1019 

 3.40 1038 



Power of quantum computing 

 A quantum computer with 400 qubits could in 

principle perform more calculations in one step 

than could have been performed by a classical 

computer made from the entire visible universe 

 In practice you need to use extra qubits to 

make the calculations work properly 

» A quantum computer with 4000 qubits could easily 

outperform any conceivable classical computer 

» These speed gains are only achievable for some 

calculations 



Getting the answer out…  

 Quantum computers could perform vast 

numbers of computations in parallel 

 But we can’t access all that power directly!   

At the end of the day we can only read out a 

single result 

 

 Quantum algorithms are all about extracting 

small pieces of useful information which are 

hard to compute in other ways 



What could we do with one?  

 Simulate quantum mechanics in complex 

systems: from astrophysics to zoology  

 

 Factorise big numbers with Shor’s algorithm:  

the end of classical cryptography? 

 Speed up searches: Grover’s algorithm 

 

 Quantum computing is not the answer to 

everything 



How might we build one? 

 To build a quantum computer you need 

 Quantum objects (to act as qubits), 

 Interacting strongly with one another (to build 

logic gates), 

 Isolated from the environment (stable), but 

 Accessible from the outside world for input, 

output and control 

 Small quantum computers (2–7 qubits) 

already exist! 
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ARDA Roadmap 2004 



NMR experiments 



Trapped atom/ion methods 
1. quantum memory:  

single atoms 

qubit in long lived 

internal states 

laser 

2. single qubit gate 

addressing a 

single qubit 

laser 

|1 |0 

|1 |0 

3. two qubit gate 

Concepts: 

• controlled interactions based 

on the Coulomb force 

between ions 

• use a collective mode as  

data bus (ion traps) 

 

qubits 

V(R) 



Ion experiments 

 

 



The NIST trap 

 

 
small trap electrode dimensions 

 

pros: 

-tight confinement  

-better for scaling up 

 

cons: 

- surface quality essential 

  impurities lead to ion heating 

  



trap 

ultra cold 

atoms Nobel prize 2001: 

Cornell, Ketterle and Wieman 

Bose Einstein condensate (BEC):  

 

 A macroscopic number of 

 particles occupy the same  

 one particle state, i.e.,T0 

Source of ultra cold atoms 

Quantum control over these atoms 

Bose-Einstein condensates 



Cold neutral atoms 

laser laser 

optical lattice as micro trap array 

(egg box for atoms!) 



laser laser 

random filling after loading 

with a BEC 

The atoms repel 

each other and do 

not want to occupy 

the same site 

Regular filling by increasing 

the interaction in a deep trap 

Theory: Innsbruck, Oxford 

Experiment: München, NIST 



Munich: I. Bloch, T. Haensch et al. 



The EPR paradox  

 Generate a pair of spin-1/2 particles in a 

singlet state (no total angular momentum) 

» Generate a pair of photons by parametric down 

conversion 

 Measure the spin of each particle along some 

randomly chosen basis 

» If the measurement bases are the same for the 

two particles then the measurement results will be 

perfectly anti-correlated 



Bell & Aspect  

 Bell analysed this problem and showed that 

the predictions of quantum mechanics were 

inconsistent with any local realistic model 

 Aspect et al. have performed a range of 

experiments which show that reality appears 

to agree with quantum mechanics 

» Nuts to Einstein, Podolsky & Rosen! 

 Effects used in quantum communication 



EPR cryptography 1 

 Alice generates many EPR pairs and sends 

one half of each pair to Bob 

 Alice and Bob measure their own particles 

along randomly chosen bases 

 Alice and Bob announce the bases they used 

(but not the results they got) 

 For those measurements where they used 

the same basis they know each others result! 



EPR cryptography 2 

 Alice and Bob can use their own local results 

to create a random number which can be 

used as a cryptography key 

 Because they built this number using EPR 

correlations they both have the same number 

 Because they never announced any of their 

results, nobody else can know it 

 A shared secret! 



EPR cryptography 3 

 What’s to stop an eavesdropper (Eve) from 

intercepting the particles which Alice sent to 

Bob? 

 If Eve doesn’t measure the particles she 

doesn’t learn anything 

 If Eve does measure the particles she 

irreparably alters their state 

 Alice and Bob can always detect this 



Photon experiments 



Photon experiments 



An ideal gift… 



Summary 

 Quantum mechanics gives an entirely new 

way of looking at information (technologies) 

 Quantum computers could transform much of 

science 

» Assuming we ever manage to build them… 

 Quantum cryptography for ultimate security 

» Commercially available! 

 Lots of lovely physics! 


