
Lecture 7: Optics / C2: Quantum Information and Laser Science:

Guided Waves

January 19, 2009

1 Optical fibers and wave guiding

We have seen that electromagnetic waves in free space (or homogeneous media) spread by diffraction.
However, they can be recollimated by lens or mirrors in such a way as to be self-reproducing after same
number of periods of any given optical arrangement satisfying certain conditions. So we can have
non-spreading beams, after a fashion. One can imagine taking such optical relays further, by making the
lengths of free-space propagation very small, and interspersing them with weak lenses. This requires the
ability to fabricate these structures. The waves that propagate in them are called guided waves, and are
part of a large class of propagating waves associated with inhomogeneous media. Among the most useful in
this class are waves in optical fibres, strands of glass structured to support non-spreading wave propagation
over many km of material, and with the ability for non-straight-line transmission. These are used
extensively in optical communication systems (see Brooker Ch. 14). The main feature of all such structure
is an inhomogeneous distribution of dielectrics such that a medium of high delectric permittivity is
sandwiched between two of lower permittivity, as shown in the figure below.
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Figure 1:

In this case electromagnetic energy tends to concentrate itself in the guiding layer, since this is the lowest
energy configuration. Another way to understand the guiding properties of such a structure is in terms of
ray optics: in this picture the light entering the guiding layer tends to experience total internal reflection at
the interfaces provided the input ray angle is not too large. This causes the ray to bounce along the
channel, remaining confined in the guide layer, even when there are small bends in the structure.
This simple idea can be used to understand the basic features of an optical fiber. A typical optical fiber
used for telecommunications has a cross-section as shown in the figure.
Typical materials are glasses doped with Germanium: GeO2,SiO2. These form the higher-index core, and
are surrounded by less-doped glasses that form the cladding layer.
For rays entering the fiber in the plane A-B in the above figure, the ray propagation is sketched below:
We can assess the angles at which light will emerge from the fiber based on the above model. The smallest
value of θi is at the critical angle for total internal reflection

θi min = sin−1(n2/n1) (1)
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Figure 3:

In this case α has its maximum value:

1× sinαm = n1 sin(90− θi min) = n1 cos θi min

sinαm = n1

√
1− sin2 θi min

sinαm =
√
n2

1 − n2
2 (2)

In general it is reasonable to take (n1 − n2)/n2 = ∆� 1, so√
n2

1 − n2
2 =

√
(n1 − n2)(n1 + n2)

=
√
n1 − n2

n1
n1(n1 + n2)

≈
√

∆2n2
1

≈ n1

√
2∆ (3)

A typical value for the normalised index difference is ∆ = 0.009. Using a reasonable value for the refractive
index of glass gives for the numerical aperture of the fiber:

N.A. = sin2 αm ≈ 0.2. (4)

Consequently θmin is θm = 11.5◦.

2 Fiber modes

Just as there are several Gaussian beams that will ”fit” in a cavity - the Hermite-Gaussian modes - there
are several modes, or field patterns that can exist in a fiber. To find these we must solve the appropriate
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wave equations.
For a step-index fiber, we use the geometry as shown in the following figure, in which the cladding is taken
to extend to infinity. Therefore we solve the scalar wave equations in cylindrical coordinates, taking
boundary conditions that the field amplitude dies to zero at infinity. To make the problem simpler, we will
assume that the field is nearly linearly polarized so we are considering a class of modes labelled LPlm.(

∇2 − n2

c2
∂2
t

)
~E = 0 (5)

or {
1
r
∂r

(
r∂r ~E

)
+

1
r2
∂2
φ
~E + ∂2

z
~E − n2

c2
∂2
t
~E

}
= 0 (6)

Figure 4:

The fiber geometry suggests that we seek a separable solution of the form

~E = ~εxF1(r)F2(φ)ei(βz−ωt), (7)

where β is the propagation constant, giving the wavenumber in the z−direction. Substituting this into the
wave equation yields {

1
r
∂r (r∂rF1)F2 +

1
r2
∂2
φF2 F1 +

(
−β2 + n2ω

2

c2

)
F1F2

}
= 0. (8)

and taking the simple azimuthal dependence

F2(φ) = e±i2πlφ (9)

gives:
1
r
∂r (r∂rF1) +

{
n2ω2

c2
− β2 − l2

r2

}
F1 = 0 (10)

Now in the core, radius a, refractive index n1, we define the transverse wavenumber kT

k2
T =

n2
1ω

2

c2
− β2 = n2

1k
2 − β2 (11)

Since k2
T > 0, the maximum value of β is n1k. Then F1(r) satisfies[

r2∂2
r + r∂r + (k2

T r
2 − l2)

]
F1(r) = 0 (12)

This is Bessel’s equation, and is satisfied by Bessel functions of the first and second kind. Since those of the
second kind (Neumann functions) Nl(kT r) diverge at the origin r = 0, we shall only be interested in the
more physically plausible Bessel functions of the first kind Jl(kT r). In this case therefore we postulate:

F1(r) = AJl(kT r) (13)

in the core. In contrast to this, in the cladding we set

k2
T = −γ2 =

n2
2ω

2

c2
− β2 < 0 (14)
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Since n2 < n1, then [
r2∂2

r + r∂r − (γ2r2 + l2)
]
F1(r) = 0. (15)

and F1(r) is therefore a modified Bessel function of the first or second kind. Of this class, those of the first
kind, Il(γr) diverge as r →∞, so we expect the solution to be one of the second kind:

F1(r) = BKl(γr). (16)

These solutions must match at the boundary between the core and the cladding. That is, the components
of ~E and ~H tangential to the core-cladding interface must be continuous. So we expect that Ez, Hz, Eφ, Hπ

will be continuous at ρ = a.

Now Bessel functions of the first kind oscillate as a function of r, and modified Bessel functions of the
second kind tend to decay for large argument. So we may expect a field of the generic form shown in Fig. 5.

Figure 5: Field pattern in a cylindrical waveguide (e.g. an optical fiber) as a function of the radius. In the
core (r � a) the field is a Bessel function of the first kind. In the cladding (r � a) it is a modified Bessel
function of the second kind. The functions and their derivatives are matched at r = a

Using the linear polarization assumption, we may write down the fields in core and cladding:

~Ecore(r, φ) = ~εxEl
Jl(kT r)
Jl(kTa)

cos(lφ)ei(βz−ωt) (17)

~Eclad(r, φ) = ~εxEl
Kl(γr)
Kl(γa)

cos(lφ)ei(βz−ωt) (18)

As with the Gaussian beams the other non-negligible field vector components can be calculated using
Maxwell’s equations. The other significant components is Hy, and the other components Ey, Ez, Hx, Hz

are small, but non-zero.

In order to get these fields, we assumed that ~E was continuous at the boundary between the two media. In
fact we should have that ~D is continuous. But the error in assuming this is small.

Error = 1−
Eclady (r = a)
Ecorey (r = a)

(19)

Since ~D is continuous, we expect

n2
2ε0E

clad
y (a) = n2

1ε0E
core
y (a) (20)

∴
Eclady (a)
Ecorey (a)

=
n2

1

n2
2

(21)
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and

Error =
n2

2 − n2
1

n2
2

=
(n2 − n1)(n2 + n1)

n2
2

≈ −2∆� 1 (22)

The boundary matching equations lead to another condition on the fields that must be satisfied for
propagating waves, that relates the propagation constant β, to the frequency ω (or k). I will not do this
calculation in detail, 1 but the procedure is to use Maxwell’s 3rd and 4th equations ∇× ~E = iµω ~H and
∇× ~B = iω ~E, to calculate Hy and Ez and Ey and Hz respectively. Then the cylindrical symmetry of the
problem requires that the azimuthal fields be matched at the boundary, so one can determine Eφ and Hφ

through the relation

Eφ =
i

k2
T

[
β

r
∂φEz − ωµ∂rHz

]
(23)

Hφ =
i

k2
T

[
β

r
∂φHz − ωε0n2∂rEz

]
(24)

Following through this algebra leads to the result

−kT
Jl−1(kTa)
Jl(kTa)

= γ
Kl−1(γa)
Kl(γa)

(25)

which is the LP mode dispersion relation, relating β to k = ω/c. It can only be solved numerically, but
yields a non-linear dependence of β on k which means that the fiber has dispersion due to the guiding of
waves. This has a non-negligible impact on optical telecommunication systems.

3 Fiber mode functions and electric field distributions

The existence of a mode in the fiber is determined by the cut-off condition for a guided wave. The wave is
no longer considered to be guided when γ = 0, since then the field does not decay further into the cladding
and thus begins to experience loss due to diffraction. This detemines the minimum wavelength for which a
stable guided wave exists. For a mode of order l, the cut-off condition is thus determined by the zeroes of
the function Jl−1(kTa) (since the right-hand side of the dispersion relation Eqn.(25) is zero). Now

k2
T = n2

1

ω2

c2
− β2

=
ω2

c2

(
n2

1 −
c2β2

ω2

)
(26)

but also γ2 = β2 − n2
2ω

2/c2 so at cut-off, when γ = 0,

c2β2/ω2 = n2
2 (27)

and

k2
T =

ω2

c2
(n2

1 − n2
2). (28)

The argument of the Bessel functions on the left-hand side of Eqn.25

kTa =
2πa
λ

√
(n2

1 − n2
2) (29)

is called the V parameter of the fiber.

l = 0 solution
The dispersion relation gives J−1(kTa) = 0. Since J−1(x) = J1(x) for l odd, the condition for cut-off is
kT a = 0 (corresponding to the first zero of the Bessel function J1(x)). Now any mode for which kT is

1The details can be found in D. Marcuse Light Transmission Optics, (Van Nostrand Reinhold, New York 1982), Ch. 8
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greater than the value needed to satisfy this condition can propagate in the fiber. In this case, there is no
minimum wavelength below which light will not propagate as an LP0 mode. The corollary is that a fiber of
any radius can support LP0 mode.

The field pattern for the LP0 mode is

Ecorex = E0
J0(kT r)
J0(kTa)

ei(βz−ωt) (30)

Equi-field lines

Figure 6:

There is no φ-dependence for the l = 0 solution, and it is obviously two fold degenerate, since we could
have chosen ~E = ~yEy instead of the x-polarization taken in the example.
Since there are several zeroes for J1(kTa) as a function of a, we expect that several different LP0 modes
can propagate if a is large enough. These are labelled by different m values, corresponding to the order of
the zero of J1(kTa) under consideration so

J1(kTa) = 0 for kTa = 0 m = 1
kTa = 3.832 m = 2
kTa = 7.016 m = 3
kTa = 10.174 m = 4

etc.

So, an LP01 mode will exist for values of kT between 0 and 3.832/a, and an LP02 mode will exist for values
of kT between 3.832/a and 7.016/a Physically the mode numbers represent how many zeroes of the field
are contained in the core region of the fiber. For example, in the LP01 mode, the field (for
0 ≤ kTa ≤ 3.832) is shown in Fig.7 . At cut-off, the field node occurs exactly at r = a.

l = 1 solution
The cut-off condition is set by the zeroes of J0(kTa). The first zero of this is at kTam = V = 2.405, so that
a, the fiber radius, has a minimum value to support this kind of mode. Only modes for which

V < 2.405 (31)

can propagate. For wavelengths of the order λ = 1.5µm, this implies a core diameter in the region
2µm < a < 5µm.
The number of field zeroes in the core region is given by the order of the zero of J0(kTa):

J0(kTa) = 0 for kTa = 2.405 m = 1
kTa = 5.520 m = 2
kTa = 8.654 m = 3 (32)
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Figure 7:

An example of the field pattern for the LP11 mode is

Ecorex = E1
J1(kT r)
J1(kTa)

cosφei(βz−ωt) (33)

Figure 8:

The two figures show a second type of degeneracy when we replace the cosφ by sinφ. In both cases the
field direction changes when φ > π/2 so the direction in each of the ”lobes” is opposite. There is an overall
4-fold degeneracy (sin, cos, x̂, ŷ).

4 Dispersion

The variation of wavelength with frequency may cause deleterious effects in fibers. In particular any
variation of the dependence of β on k beyond a linear one causes pulse broadening. We can determine the
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size of the nonlinear terms from the dispersion relation. Let

ω = φ(k) (34)

Then

∂ω

∂k
= group velocity (35)

∂2ω

∂k2
= group velocity dispersion (36)

As you have seen, in the ultrafast lasers lectures, the latter term gives rise to pulse broadening. Such
broadenging can be a problem for optical fiber communications, since the pulses (or absences thereof) that
are used to represent the ”1”s and ”0”s of a bit stream respectively, can be broadened enough that they
overlap. It is then difficult to tell the value of the bit and thus the message is corrupted.

In the step index fiber the relevant quantity in the set of derivatives of β, the propagation constant (akin to
k above) with respect to k, the wavevector (akin to ω above). We seek dβ/dk in the first instance. Now the
dispersion relation can be written in terms of two parameters

V =
2πa
λ

√
n2

1 − n2
2 (37)

b =
β2/k2 − n2

2

n2
1 − n2

2

(38)

So pairs of values of V and b must satisfy:

V
√

1− bJl−1(V
√

1− b)
Jl(V
√

1− b)
= −V

√
b
Kl−1(V

√
b)

Kl(V
√
b)

(39)

Here a choice of V implies k, and a choice of b implies β. Thus:

β2 = k2[n2
2 + b(n2

1 − n2
2)]

= n2
2k

2[1 + 2∆b] (40)

assuming ∆ is small, as we have seen is usually the case. Then expanding the square root gives:

β ≈ n2k[1 + b∆]
= n2k + n2kb∆ (41)

Now the second term in this expansion is, in terms of V

n2kb∆ =
bV
a

√
∆
2

(42)

So that the dispersion relation can be used to find the group velocity:

dβ

dk
=

d

dk
(n2k) +

d

dk
(n2bk∆)

=
d

dk
(n2k)︸ ︷︷ ︸

material dispersion

+n2∆
d

dV
(bV)︸ ︷︷ ︸

waveguide dispersion

(43)

The first of these terms is the familiar one, the second is a new one arising from the confinement of the
waves in the transverse dimension. The physical origin of this effect is that the field is spread across two
different media, in which the speed of light is different. Therefore the mode sees a sort of ”average” of the
speeds, depending on how confined it is in the core. So a mode that spreads very little into the cladding
moves with speed close to c/n1, whereas one which resides largely in the cladding moves with speed close
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to c/n2. Modes in between compromise between these two extremes. Typical values for the two terms in
Eqn. 43 are dβ/dk/c = 5ns/km for materials and dβ/dk/c = 0.5ns/km for waveguide dispersion.

There is also a component of multimode dispersion - the difference in group velocity between modes of
higher mode number. This can be quite large (dβ/dk/L|mn ≈ 50ns/km) and is due to the path difference
between an axis (l = 0,m = 0) type rays and off-axis (l > 0,m > 0) rays. The physical origin of this effect
can be most easily appreciated using the ray model of propagation as shown in Fig.9.

Figure 9: The origin of multimode dispersion in fibers in terms of ray optics. The fundamental mode has
kT = 0, and thus its wavevector is directed along the axis of the fiber. Higher order modes have kT > 0,
and thus ”bounce” from one edge of the core to the other. The overall optical path length for these modes
is higher for a given length of fiber than for the fundamental mode.
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