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1 Random waves

We have discussed up till now monochromatic waves of the form ei(
~k·~r−ωt), in which the phase evolution is

predictable from point to point and from time to time. In most real cases (even with a laser) this is not
usually the case. Most real waves are not such idealised forms and have a random amplitude or phase from
point to point and time to time. This leads to important consequences in practical measurements and for
new applications.
For a single wave, we can write (for example)

E1(~r, t) = ε1e
i(~k·~r−ωt+φ1), (1)

where ε1 and φ1 are both real random variables. Then if we measured the intensity of this beam over an
ensemble, described by the probability distribution P(ε1, φ1), we should find

I = |E1(~r, t)|2 = ε21, (2)

so that the mean intensity is

〈I〉 =
∫
dε1dφ1P(ε1, φ1)ε21. (3)

Usually we can make an ergodic hypothesis, which allows us to replace an ensemble average with a time
average, so that we would get the same mean intesity by using a ”slow” detector

〈I〉 =
1
T

∫ T/2

−T/2
dt I. (4)

Since the field is fluctuating in time:

Now τc is the characterisitic time scale of these fluctuations, so we need T � τc. If we interfere two such
beams together, then we find

〈I〉 =
∫
dε1dε2dφ1dφ2 P(ε1, ε2, φ1, φ2)(ε21 + ε22 + 2ε1ε2 cos(φ1 − φ2)) (5)
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If the phases vary over a broad enough range, and are statistically independent (i.e.
P(ε1, ε2, φ1, φ2) = P(ε1, φ1)P(ε2, φ2)) then the last term in parentheses average to zero, and we are left with
averaging the sum of the two intensities. In this case the waves are said to be mutually incoherent and

〈I〉 = 〈I1〉+ 〈I2〉. (6)

and more generally
〈I〉 =

∑
i

〈Ii〉 (7)

for a set of waves characterized by a parameter {i}.

2 Characteristic parameters

We have assumed in the last section that the amplitude and phase are random variables. Often it suffices
to consider simply the phase as such, sinc this have the greatest effect when a set of waves is incident on a
detector. In this case 〈I〉 =

∑
i〈Ii〉 =

∫
diP (i)Ii. It is then left to decide the important characteristics that

form the set {i}.
EM waves have 3 degrees of freedom (excluding polarization);, the two components of the transverse
wavevector and the frequency (~k⊥, ω), or equivalently the transverse spatial coordinates and time (~r, t).
The fourth variables kz or z are found from the dispersion relation:

ω

c
= |~k| =

√
~k⊥ · ~k⊥ + k2

z (8)

or its time domain equivalent. Therefore we should examine for ensembles that are described by
distributions of these parameters P(~k⊥, ω).

3 Temporal or longitudinal coherence

Let us consider distributions of the form P (ω) only. That is, the interferometer is illuminated by a
broadband source, with random phase between the different spectral components. In order to understand
the resulting interference pattern, it is instructive to recall an archetype: the Young’s double slit
illuminated by a single plane wave.

Plane wave

frequency ω
fringe pattern

fringe spacing

The fringe pattern in the Frauhofer zone, assuming narrow slit-like apertures, is given by:

I = I(ω) cos2(k(ω)ax/z)

=
I(ω)

2

(
1 + cos

(
2aωx
cz

))
(9)
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where I(ω) = ε2ω is the intensity of the incident wave at frequency ω. Now consider the slit being
illuminated by light with a range of frequencies, so that I(ω) describes the distribution of intensities at
these frequencies. In this case the interference pattern will be the superpostion of the interference patterns:

〈I〉 =
∫
dω

I(ω)
2

(
1 + cos

(
2aωx
cz

))
. (10)

What does this look like? Note that the scale of the interference pattern changes with frequency and thus
the superposition contains lots of terms where ”peaks” of one distribution will overlap ”valleys” of another.

The consequence is that, away from the region near x = 0, the intensity will consist of an equal number of
peaks and valleys, and this will average to a constant value, more or less. Given our formula we can be
more explicit about this. The intensity at the screen is

〈I〉 =
1
2

∫
dω I(ω) +

1
4

∫
dωI(ω)ei

2ax
cz ω +

1
4

∫
dωI(ω)e−i

2ax
cz ω (11)

Examining the second and third terms, we find that 2ax/cz has the dimensions of time. Defining

τ =
2ax
cz

. (12)

Then the second term is just the Fourier transform of the spectrum of the illuminating source;∫
dωI(ω)eiωτ = Ĩ(τ) (13)

Likewise the third term is the Fourier transform Ĩ(−τ). From a knowledge of Fourier transforms, we know
that if I(ω) = I∗(ω) and I(ω) = I(−ω), then Ĩ(τ) = Ĩ(−τ) and we are left with:

〈I〉 =
1
2

(Ĩ(0) + Ĩ(τ)). (14)

Ĩ(τ) is called the temporal correlation function of the source, and we will examine one or two simple
examples.
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Consider the case of a Gaussian spectrum:

I(ω) = Ie−(ω−ω0)2/γ2
, (15)

where ω0 is the mean frequency of the light and γ is the source bandwidth. Inserting this into the
expression for the correlation function gives

Ĩ(τ) = I

∫
dωe−(ω−ω0)2/γ2

eiωτ

= I

√
π

1/γ2
e
− τ2

4/γ2 e−iω0τ

= Iγ
√
πe−γ

2τ2/4e−iω0τ (16)

∴ Ĩ(τ) + Ĩ(−τ) = 2Iγ
√
πe−γ

2τ2/4 cosω0τ. (17)

Consequently the fringe pattern as a function of τ becomes

〈I〉 = Iγ
√
π
(

1 + e−γ
2τ2/4 cosω0τ

)
. (18)

(position along screen)

What this shows is that there are interference fringes of high contrast near τ = 0, but that the fringe
visibility decreases as |τ | increases. Once |τ | is comparable with a few times the inverse bandwidth of the
source, the fringes have disappeared into the back ground. This value of τ is called the correlation time of
the source.
In order to arrive that this result we have assumed that:

1. Each frequency component has a random phase with respect to the next.

2. The detector averages long enough that all random phases are realized.

Under these conditions, we may add the intensities of individual frequency components and get to the
above result.

4 Optical coherence tomography (OCT) and Fourier-transform
spectrometry (FTS)

Since the visibility of the fringe pattern using a broad band source depends only on the path difference
delay τ , it is easy to see how to contruct a Michelson interferometer to measure the pattern:
Scanning one of the mirros while keeping the other fixed changes τ , and the intensity at the detector then
maps out the interference pattern:

〈I〉 = 〈I〉(τ) =
1
2

(Ĩ(0) + ReĨ(τ)). (19)

This arrangement has two important applications:
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S
Moving mirror       changes 

1. Optical Coherence Tomography (OCT). This is a method for measuring the structure of tissue by
reflecting light from the layers immediately below the surface and determining the depth of the
surface from the location of the peak of the fringe pattern.

We have seen that the fringe pattern is peaked at τ = 0. Thus we can locate the mirror position
τ = 0 very accurately - if the source has a large enough bandwidth. The precision of the
measurement is ∝ 1/γ. Also, say we replace M2 by a sample with several buried surfaces. Then
scanning M1 gives a peak in the interference pattern whenever τ = τn where τn is related to the
depth of the buried surface. This method is used to locate tissue in biological samples, and is
especially useful for profiling the eye, say, prior to surgery.

S

Sample

O

2. Fourier-Transform Spectroscopy (FTS). Since the fringe pattern as a function of τ is related to the
Fourier transform of the source spectrum, it can be inverted to obtain the spectrum. In this case the
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fringe pattern is recorded, digitized, resampled and inverse transformed using a computer.

˜〈I〉 =
∫
dΩ eiΩτ 〈I〉(τ)

= I(0) + I(Ω) + I(−Ω) (20)

O

The spectrum can be obtained by digitally filtering one sideband or the other.

This technique finds application in the measurement of spectra in the near infrared where it is hard
to find good detector arrays for use with a grating spectrometer.

5 Spatial or transverse coherence

In this case the parameter of interest is the transverse wavevector of the waves. The source is described by
the distribution P (~k⊥), and all waves have the same frequency. Again there is an random phase between
different angular components of the illumination. In this case the physics is different, but still simple: the
angle of incidence of the light at the slits affects the lateral position of the fringes, which have the same
spacing (which only depends on the wavelength and distance to the screen, given a slit separation).

Zero order fringe 

Zero order fringe 

The fringe shift reflects the additional phase of the wave at the upper slit as compared to the lower slit,
which depends on the angle of incidence. Then, in the Fraunhofer zone, the interference pattern for light
incident at angle θ is

I =
1
2
I(θ)

(
1 + cos

(
2akx
Z

+ ka sin θ
))

(21)

where I(θ) is related to the distribution of ~k⊥ (transverse wavevectors) in the source.
The fringes have shifted by δx:

δx = −aZ
2a

sin θ = −Z
2

sin θ (22)
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Wavefront

Slit screen
where 

Just as with the previous case, it is clear that a distribution of angles of light from the source will give a
distribution of patterns of the fringe peaks, meaning some will sit on the valleys of other fringe patterns
and the whole interference patterns will gradually wash out.

Using the same procedure as before we can determine the fringe pattern explicitly, given the angular
distribution of the source:

〈I〉 =
1
2

∫
dθ I(θ) (1 + cos (kaϕ+ ka sin θ)) (23)

where tanϕ = x/Z is the position we are looking at on the screen. If we remain in the paraxial limit, both
for the source distribution and for the observation region; we have

〈I〉 =
1
2

∫
dθ I(θ) +

1
4

∫
dθ I(θ)eikaθeikaϕ +

1
4

∫
dθ I(θ)e−ikaθe−ikaϕ. (24)

or, if Ī(ξ) represents a spatial distribution of the source that is the Fourier transform of the angular
distribution I(θ):

Ī(ξ) =
∫ ∞
−∞

dθ I(θ)eiξθ (25)

[Note: Of course θ can only range from [−π,+π], so the limits of the integral make little sense. But recall
that we are remaining in the paraxial limit where I(θ) is only non zero for a small range of θ near θ0. In
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this case it does not matter if the integral limits have finite range, the actual results will be the same as the
full F.T.]
Then

〈I〉 =
1
2
{
Ī(0) + Ī(ka) cos(kaϕ)

}
. (26)

Just as before, the fringe visibility decreases as Ī(ξ) decreases. In this case, we can explore the function
Ī(ξ) by varying the slit separation a.
For example, consider a source with an angular distribution of radiation

I(θ) = Irect(θ/Θ) (27)

Then

Ī(ka) = I

∫ Θ/2

−Θ/2

dθ eikaθ = I
eikaΘ/2 − e−ikaΘ/2

ika
= IΘ sinc(kaΘ/2) (28)

So if we look at the fringe visibility in an experiment where the slit separation is changed we find that it
has the form

-re V !

Just as for the spectral case, the fringe visibility maps out the angular distribtution of the source light.
In this case the position of the slits at the first zero of V tells the angular diameter of the source Θ:

V = 0 first at a = a0 =
4π
kΘ

∴ Θ =
4π
ka0

(29)

What about negative visibility? This simply means that the position of the dark and bright fringes have
swapped - where a bright fringe occured as a was increased from a = 0 to a = a0, now occurs a dark fringe.

6 The Michelson Stellar Interferometer

This notion is the basis of the Michelson Stellar Interferometer, which was used by Michelson (the second
US Nobel Prize winner) to determine the angular diameter of stars. The arrangement he used is similar to
the figure shown above.
Finally, in most laboratory experiments, including interference microscopes, the angular range of
illumination of the slits is proportional to the physical size of the source itself. Consider the arrangement:
Then, assuming the source S is a primary, incoherent source (i.e. the light emanating from each part on it
has a random phase with respect to the light from all the other parts) the above ideas apply.

7 Coherence and statistical optics

Coherence concerns how the field at different space-time points is related. For example, over what region of
space can we predict the phase of the wave given its phase at another location? The first figure below
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Source

lens

shows how the field at two different space-time points contributes to the field at a third space-time point.
The second figure indicates that if the fields from points 1 and 2 give rise to high-visibility interference
fringes at point ~r, t, then we may ask whether there will also be good interference at point ~r, t+ δt.
This depends on the space-time separation of points 1 and 2. So long as

δt <
2π
∆ω

∆ω width of spectrum (30)

δ~r <
2π
k∆θ

∆θ width of angular spectrum, (31)

there will still be good interference.

1

2

If good interference here

under what condition there is

good interference here?
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