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1 Fourier analysis

This branch of analysis is extremely useful in dealing with linear systems (e.g. Maxwell’s equations for the
most part), when we want to go beyond plane wave with monochromatic frequency. The basic idea is that
any periodic signal, V (t) (say a scalar at present), with period τp, can be represented as a sum of sines and
consines with discrete frequencies. Let

Period

0

etc.

V (t) =
∞∑
n=0

an cos(nωpt+ αn) (1)

where ωp = 2 ∗ π/τp, an = amplitude of component at frequency nωp, αn = phase of the component at
frequency nωp. Then the set of real numbers {αn, an} completely specify the signal, once τp is specified.
They can be found by using the orthogonality properties of the series:

Vn =
1
τp

∫ τp

0

dt V (t)einωpt =
∞∑
n′=0

1
τp

∫ τp

0

dt′ an′ cos(n′ωt+ αn′)einωpt

Vn =
∞∑
n′=0

An′,n (2)

where

An′,n =
1
τp

∫ τp

0

dt
an′

2
ei(n+n′)ωpt+iαn′ +

an′

2
e−i(n−n

′)ωpt−iαn′

=
an′eiαn′

2τp

[
ei(n

′+n)ωpt

i(n′ + n)ωp

]τp

0

+
an′e−iαn′

2τp

[
e−i(n

′−n)ωpt

−i(n′ − n)ωp

]τp

0

=
an′eiαn′

2τp
δn′,n +

an′e−iαn′

2τp
δn′,n (3)

where the Kronecker-delta symbol is defined by:

δn,m = 1 n = m

= 0 otherwise. (4)
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Then the coefficients are;

n > 0 Vn =
αne

iαn

2

n < 0 Vn =
αne

−iαn

2
n = 0 V0 = a0 (5)

and in general V ∗n = V−n. The function V (t) can therefore by expressed as

V (t) =
∞∑

n=−∞
Vne
−inωpt Vn =

1
τp

∫ τp

0

dt V (t)einωpt (6)

2 Fourier Transforms

If a function V (t) is non-periodic, it can not be expanded in a Fourier series. This is because τp →∞, and
the sum becomes an integral. Recall that for a periodic function:

V (t) =
∞∑

n=−∞
Vne
−inωpt (7)

. . . . . . 

Define a continuous function Ṽ (ω) such that the coefficients Vn are samples of this function

An = Ṽ (nδω)
δω

2π
. (8)

Then

V (t) =
∞∑

n=−∞

δω

2π
Ṽ (nδω)einδωt (9)

Now take the limit δω → 0, with nδω → ω

V (t) =
∫ ∞
−∞

dω

2π
Ṽ (ω)eiωt (10)

This defines the function V (t) as the Fourier Transform of a conjugate fuction Ṽ (ω). Since V (t) is real,
V (t) = V ∗(t), so Ṽ (ω) = (̃V )∗(−ω), which is analogous to the property of the Fourier coefficients Vn = V ∗−n
in the series expansion.
As we have seen, it is often convenient to work with a complex signal field, rather than a real one; and it is
useful to define the analytic signal, which is the Fourier Transform of the half spectrum of Ṽ (ω) associated
with positive frequencies. By definition

V (t) =
∫ ∞
−∞

dω

2π
Ṽ (ω)eiωt

=
∫ 0

−∞

dω

2π
Ṽ (ω)eiωt +

∫ ∞
0

dω

2π
Ṽ (ω)eiωt

=
1
2
U∗(t) +

1
2
U(t) (11)
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The function U(t) is the analytic signal associated with V (t). Its real and imaginary parts are the cosine
and sine transforms of the spectrum Ṽ (ω) = a(ω)eiα(ω).
It is useful, not only because it makes the mathematics more compact, but also because it is closely related
to the envelope of the real signal.

The analytic signal is a convenient tool for calculating properties of non-monochromatic fields such as
Poynting vector modulus or the intensity:

I =
1

2T

∫ T

−T
dt (E(t)H(t)) =

n

Z0

1
2T

∫ T

−T
dtE2(t) (12)

Now take V (t) to be an aperiodic signal signal, with non-zero value only in some ’small’ range of t, and let
T →∞; in the integral (so long as T > range of support of V (t))

I =
n

Z0

1
2T

∫ ∞
−∞

dt V 2(t)

I =
n

Z0

1
2T

∫ ∞
−∞

dω

2π
|Ṽ (ω)|2 =

n

Z0

1
T

∫ ∞
0

dω

2π
|Ṽ (ω)|2. (13)

It makes sense from the point of view of conservation of energy that the intensity can be expressed in the
same form for both time-domain and frequency-domain signals.
Thus the power density per unit frequency interval P (ω) is defined by∫ ∞

0

P (ω)dω = I (14)

so
P (ω) =

n

Z0

1
2π
|Ṽ (ω)|2 (15)

3 Some important properties of Fourier transforms (F ≡
Transformation operation)

1. Linearity:
F {αg + βh} = αF{g}+ βF{h} (16)

The F.T. of the sum of two functions is the sum fo the transforms of each.

2. Similarity: If F{g(t)} = G(ω), then:

F{g(at)} =
1
|a|
G
(ω
a

)
(17)
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A scale change in ... leads to the inverse change in the conjugate domain, e.g. compressing the time
domain (a < 1) expands the spectrum.

3. Shift Theorem: If F{g(t)} = G(ω) then:

F{g(t− a)} = G(ω)eiωa (18)

4. Parseval’s Theorem: ∫
dt |g(t)|2 =

∫
dω

2π
|G(ω)|2 (19)

The total power in the signal is the same in both domains.

5. Convolution Theorem: If F{g(t)} = G(ω) and F{h(t)} = H(ω), then

F
{∫

dt′ g(t′)h(t− t′)
}

= G(ω)×H(ω) (20)

Compact notation:
F {g(t) ∗ h(t)} = G(ω)×H(ω) (21)

6. Autocorrelation Theorem: (special case of Convolution Theorem)

F
{∫

dt′ g(t′)g(t− t′)
}

= |G(ω)|2 (22)

This is closely related to the measurement of spectra of optical fields.

7. Fourier Integral Theorem
FF−1{g(t)} = F−1F{g(t)} = g(t) (23)

The Fourier transformation operation has an inverse, except at points of discontinuity.

4 Generalized Functions: the Dirac δ function

The familiar idea of the Kronecker-delta symbol can be extended to continuous indices:

Kronecker-delta: δnn′ = 1 if n = n′

= 0 otherwise (24)

This function arose naturally in the development of Fourier series. For example, it is obvious that the
Fourier coefficients for the sinusoidal function:

V (t) = cos(mωpt) (25)

are

Vn =
1
2

n = m, n = −m

= 0 otherwise (26)

or
Vn =

1
2
δnm +

1
2
δn,−m. (27)

Now define a density function δ(ω), such that:∫ 0+

0−
δ(ω) dω = 1 (28)
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with the property

δ(ω) = ∞ ω = 0
δ(ω) = 0 otherwise (29)

The delta function has a sifting property∫ ∞
−∞

dω f(ω)δ(ω − ω0) = f(ω0) (30)

That allows it to ’pick out’ a certain value form the function with which it is convolved.
The Dirac delta function can be seen as the limit of a series of progressively more ’spiky’ test functions.

δ(ω) = lim
N→∞

∫ N

−N

dt

2π
e−iωt =

∫ ∞
−∞

dt

2π
e−iωt (31)

or alternatively:

δ(t) = lim
N→∞

δN (t); lim
N→∞

Ne−N
2π2t2 ; lim

N→∞
Nrect(Nt); lim

N→∞
N

sin(Nt)
Nt

(32)

For example: the function

δN (t) =
sin(Nt)

t
(33)

0
t

has the desired sifting and normalization properties, as does the function

δN (t) = N rect(Nt) (34)

The Fourier transform of the rect(...) function is the sinc(...) function; so these two sequences are

5



0
t

1/2-1/2

Fourier Transform pairs. This can be seen formally from the following calculation;

δ̃N (ω) =
∫ ∞
−∞

dt δN (t)eiωt

= N

∫ 1/2N

−1/2N

dt eiωt

= N
eiωt

iω

∣∣∣1/2N
−1/2N

= N
eiω/2N − e−iω/2N

iω

=
eiω/2N − e−iω/2N

2iω/2N

=
sin(ω/2N)
ω/2N

= sinc(ω/2N).

5 Sampling Theorem

Often in the laboratory we can not measure a continuous variable; we ’sample’ it using a discrete detector
at a set of specified positions, for example. Thus if the field is represented by the analytic signal U(~r, t), we
usually end up with a set of numbers representing the signal, say {Un}, where

Un = U(~rn, tn) δ~r δt︸ ︷︷ ︸
sampling volume

(35)

Under what conditions can we say that the sample set is a faithful representation of the signal itself? We
can use the Fourier series to answer this question. First we need an intermediate result.
Let f(x) be an aperiodic integrable function. Then g(x) =

∑∞
n=−∞ f(x+ n) is a periodic function (since

g(x+m) = g(x), with m integer). Therefore g(x) must have a Fourier series representation.

g(x) =
∞∑

n=−∞
f(x+ n) =

∞∑
m=−∞

f̃me
imx (36)

where

f̃m =
∫ 1

0

dx g(x)eimx =
∫ 1

0

dx

∞∑
n=−∞

f(x+ n)eimx (37)
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The sum and integral can be combined;
∫ 1

0
dx
∑∞
n=−∞ · · · →

∫∞
−∞ dx · · ·

f̃m =
∫ ∞
−∞

dx f(x+ n)eimx (38)

Letting x′ = x+ n

f̃m =
∫ ∞
−∞

dx′ f(x′)eim(x′−n) = e−imnf̃(m) = f̃(m) (39)

So that

g(x) =
∞∑

n=−∞
f(x+ n) =

∞∑
m=−∞

f̃me
imx (40)

Now consider the special case f(x) = δ(x). Substituting this in Eqns.(39) and (40), we find the Poisson
Sum Formula:

∞∑
n=−∞

δ(x+ n) =
∞∑

m=−∞
eimx. (41)

This is very useful for representing sampled functions, because we can think of a sampled function as being
a product of the continuous function with a ’comb’ of Dirac delta functions.

Un =Us(t)

tn tn+1 tn tn+1t tt

=

U(t) comb(t)

Then if Us(t) represents the sampled function, so Un = Us(tn)∆t;

Us(t) = U(t)×
∞∑

n=−∞
δ(t− nτs) (42)

where τs is called the sampling rate. The spectrum of this function is the convolution

Ũs(ω) = Ũ(ω) ∗ F

{ ∞∑
n=−∞

δ(t− nτs)

}
(43)

and the Fourier transform of the second term is

F

{ ∞∑
n=−∞

δ(t− nτs)

}
=
∫ ∞
−∞

dt

∞∑
n=−∞

δ(t− nτs)eiωt =
∫ ∞
−∞

dt

∞∑
n=−∞

eint/τs−iωt (44)

where in the last step we used the Poisson Sum Formula. Therefore

Ũs(ω) = Ũ(ω) ∗
∞∑

n=−∞
δ(ω − n/τs) (45)

is a periodic function, with the spectrum of the signal occuring in every period, as shown in the figure.
It is clear that we can get back the orginal function U(t) by simply filtering one of these ’replica’ spectra
and taking its inverse transform. But this will only work if the replicas do not overlap. The condition for
’non-overlapping’ is that 1/τs is broader in frequency than the spectrum of the pulse itself. This leads to
the Nyquist sampling theorem:
To faithfully reconstruct a pulsed signal of bandwidth (FWHM) ∆ω, the sampling rate in the time domain
must be greater than τs = 2π/∆ω.
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