## Optical Field Mixing

Second harmonic generation

$$
\begin{aligned}
& E=E_{0} \cos \omega t \\
& P(E)=\varepsilon_{0} \chi^{(2)} E_{0}^{2} \cos ^{2} \omega t=\frac{1}{2} \varepsilon_{0} \chi^{(2)} E_{0}^{2}(\cos 2 \omega t+1)
\end{aligned}
$$

Sum and difference generation

$$
\begin{aligned}
& E=E_{1} \cos \omega_{1} t+E_{2} \cos \omega_{2} t \\
& P(E)=\varepsilon_{0} \chi^{(2)}\left(E_{1} \cos \omega_{1} t+E_{2} \cos \omega_{2} t\right)^{2} \\
& \Rightarrow 2 \varepsilon_{0} \chi^{(2)} E_{1} E_{2} \cos \omega_{1} t \cos \omega_{2} t \\
& =\varepsilon_{0} \chi^{(2)}\left[\cos \left(\omega_{1}+\omega_{2}\right) t+\cos \left(\omega_{1}-\omega_{2}\right) t\right]
\end{aligned}
$$

## Oscillating Polarisation

Optical polarisation

Fundamental polarisation

SH Polarisation


Constant (dc) polarisation


## SHG: Efficiency factors

The generated second harmonic has to remain "in step" with the fundamental wave which produces
it. This is known as
phase-matching.

## Coherence length



$$
I^{2 \omega}=\frac{(2 \omega)^{2}\left(\frac{1}{2} \chi^{S H G}\right)^{2}}{2 n^{2 \omega}\left(n^{\omega}\right)^{2} c^{3} \varepsilon_{0}}\left(I^{\omega}\right)^{2}\left\{\frac{\sin (\Delta k z / 2)}{\Delta k z / 2}\right\}^{2} z^{2}
$$

## Efficiency Factors

1. Walk-off


2. Beam Divergence



## Index ellipsoid

To match the indices the fundamental wave propagates as the ordinary wave while the second harmonic as the extraordinary.


Index ellipsoid for uniaxial crystal

$$
\frac{x^{2}}{n_{0}^{2}}+\frac{y^{2}}{n_{0}^{2}}+\frac{z^{2}}{n_{e}^{2}}=1
$$

## Directions and fields in SHG



## Phase-matching

The idea is to make use of dispersion to achieve a common index of refraction and thereby a common propagation velocity in the medium.

PHASE MATCHING
by Index Matching

$$
n_{e}(2 \omega)=n_{0}(\omega)
$$



## Phase-matching - Index ellipsoid

In type I phasematching the fundamental and second harmonic waves travel as waves of different types,
i.e. one as the ordinary the other as the extraordinary wave.

The required condition is then

$n 1(2 \omega)=n 2(\omega)$

## Computing the phase-match angle

For the extraordinary wave the index ellipse gives:

$$
\frac{1}{n_{e}^{2}(\theta)}=\frac{\cos ^{2} \theta}{n_{o}^{2}}+\frac{\sin ^{2} \theta}{n_{e}^{2}}
$$

So, if we require $n_{e}(2 \omega, \theta)=n_{o}(\omega)$ then,

$$
\theta_{m}=\cos ^{-1}\left\{\frac{\left(n_{0}^{\omega}\right)^{-2}-\left(n_{e}^{2 \omega}\right)^{-2}}{\left(n_{0}^{2 \omega}\right)^{-2}-\left(n_{e}^{2 \omega}\right)^{-2}}\right\}^{\frac{1}{2}}
$$

## Walk-off



> The second harmonic wave can walk away from the fundamental.

$\underline{S}$ and $\underline{k}$ are not collinear.

## Walk-off calculation

$$
\tan (\theta+\rho)=\left(\frac{d y}{d x}\right)=-\left(\frac{x}{y}\right)\left(\frac{b^{2}}{a^{2}}\right)=-\tan \theta \times\left(\frac{b^{2}}{a^{2}}\right)
$$

$$
\begin{gathered}
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \\
\frac{2 x}{a^{2}}+\frac{2 y}{b^{2}} \frac{d y}{d x}=0
\end{gathered}
$$



## Maximising the SHG output

$>$ When the angle $\theta$ to $z$-axis is equal to $\theta_{m}$
$>$ When the angle to the $x$-axis equals $45^{\circ}$
$>$ When the input beam has a low divergence
$>$ When the crystal temperature is constant (since $n=f(T)$ )
$>$ When the crystal is relatively short (coherence length)

## 45 degree, z-cut

Efficiency maximised
Little or no walk-off
High angular tolerance


## Depletion \& Focus

Coupled Equations now give a tanh solution


## Depleted Input Beam

For depletion under perfect phase-matching:

$$
\frac{I^{2 \omega}}{I^{\omega}}=\tanh ^{2}\left[\frac{\kappa L}{2}\right]
$$

Where the coupling is given by:

$$
\kappa^{2}=8 d^{2}\left(\frac{\mu_{0}}{\varepsilon_{0}}\right)^{3 / 2} \frac{\omega^{2} I^{\omega}(0)}{n^{2 \omega}\left(n^{\omega}\right)^{2}}
$$

Which for low depletion reduces to:

$$
\frac{I^{2 \omega}}{I^{\omega}}=2 d^{2}\left(\frac{\mu_{0}}{\varepsilon_{0}}\right)^{3 / 2} \frac{\omega^{2} I^{\omega}(0) L^{2}}{n^{2 \omega}\left(n^{\omega}\right)^{2}}
$$

Which is identical to our earlier expression, noting

$$
d \equiv \frac{1}{2} \varepsilon_{0} \chi^{S H G}
$$

## Optical Parametric Oscillator

w3 pump
Nonlinear X'tal


Conditions for the generation of new optical frequencies:

$$
\begin{array}{ll}
\omega_{1}+\omega_{2}=\omega_{3} & \text { Energy } \\
k_{1}+k_{2}=k_{3} & \text { Momentum } \\
\frac{\omega_{1} n_{1} L}{c}=m \pi & \text { Modes } \\
\frac{\omega_{2} n_{2} L}{c}=s \pi & \text { Modes }
\end{array}
$$

## Parametric processes I

(a)


(c)


## Parametric processes II

$$
E(t)=\operatorname{Re}\left\{E\left(\omega_{1}\right) \exp \left(-i \omega_{1} t\right)+E\left(\omega_{2}\right) \exp \left(-i \omega_{2} t\right)\right\}
$$

$$
\begin{aligned}
P_{N L}(0) & =d\left[\left|E\left(\omega_{1}\right)\right|^{2}+\left|E\left(\omega_{2}\right)\right|^{2}\right] \\
P_{N L}\left(2 \omega_{1}\right) & =d E\left(\omega_{1}\right) E\left(\omega_{1}\right) \\
P_{N L}\left(2 \omega_{2}\right) & =d E\left(\omega_{2}\right) E\left(\omega_{2}\right) \\
P_{N L}\left(\omega_{+}\right) & =2 d E\left(\omega_{1}\right) E\left(\omega_{2}\right) \\
P_{N L}\left(\omega_{-}\right) & =2 d E\left(\omega_{1}\right) E^{*}\left(\omega_{2}\right)
\end{aligned}
$$

## Parametric Processes III

## PARAMETRIC UP-CONVERSION



## Example: generation of 243 nm



Two-photon transitions in hydrogen

## Example: summing in KDP

$$
\left[\begin{array}{c}
P_{x} \\
P_{y} \\
P_{z}
\end{array}\right]=\varepsilon_{0}\left[\begin{array}{cccccc}
0 & 0 & 0 & d_{14} & 0 & 0 \\
0 & 0 & 0 & 0 & d_{25} & 0 \\
0 & 0 & 0 & 0 & 0 & d_{36}
\end{array}\right]\left[\begin{array}{c}
E_{y}^{\frac{t}{2}} \\
E_{z}^{2} \\
2 E_{y} E_{z} \\
2 E_{x} E_{z} \\
2 E_{x} E_{y}
\end{array}\right]
$$

For this symmetry group:

$$
d_{14}=d_{25} \neq d_{36}
$$

For the second harmonic to propagate as the extraordinary wave:

$$
P_{i}^{2 \omega}=2 d_{i j k} E_{j}^{\omega} E_{k}^{\omega}
$$

## Symmetry \& Kleinman

Since no physical significance is attached to an exchange of $E j$ and $E k$

$$
d_{i j k}=d_{i k j}
$$

And using the contracted form

$$
\begin{aligned}
& x x=1 ; y y=2 ; z z=3 \\
& y z=z y=4 ; x z=z x=5 ; x y=y x=6
\end{aligned}
$$

In addition for a lossless medium all $d$-coefficients that are related by a rearrangement of order of the subscripts are equal. This reduces the maximum number of d's from 18 to 10, e.g. for KNP: $d_{14}=d_{36}$

$$
\begin{aligned}
& P_{i}=-\nabla U(E) \\
& U(E)=-\varepsilon_{0} \frac{\chi_{i j}}{2} E_{i} E_{j}-\frac{2 d_{i j k}}{3} E_{i} E_{j} E_{k} \cdots \\
& P_{i}=-\frac{\partial U(E)}{\partial E_{i}}=\varepsilon_{0} \chi_{i j} E_{j}+2 d_{i j k} E_{j} E_{k} \cdots
\end{aligned}
$$

## Sun Yariv P384

## Frequency summing in KDP

The form of the polarizability tensor for these negative uniaxial crystals with 42 m symmetry class enables generation of the SHG as an extraordinary wave.
The expression for deff maximises when $\theta=90^{\circ}$ and $\Phi=45^{\circ}$, i.e.,

$$
\begin{aligned}
P_{z}^{\prime} & =P_{z} \sin \theta=2 \varepsilon_{0} d_{36} E_{0}^{2} \sin \theta(\cos \phi \times \sin \phi) \\
& =\varepsilon_{0} d_{36} E_{0}^{2} \sin \theta \sin 2 \phi
\end{aligned}
$$

## Phase-matching angles



The fundamental is plane-polarized in the $x-y$ plane it propagates as an ordinary wave and generates a SHG polarization along $z$. This has to be project along $k$

## Frequency summing in KDP

Energy conservation $(\omega)$ :

$$
\frac{1}{243}-\frac{1}{351}=\frac{1}{\lambda_{2}}
$$

Indices must satisfy ( k ):
Calculating the phase-matching angle gives almost $90^{\circ}$, i.e.,

$$
\theta=\sin ^{-1}\left\{\frac{n_{e}\left(\lambda_{3}\right)}{n_{e}^{\theta}\left(\lambda_{3}\right)} \sqrt{\frac{n_{0}^{2}\left(\lambda_{3}\right)-n_{e}^{\theta}\left(\lambda_{3}\right)^{2}}{n_{0}^{2}\left(\lambda_{3}\right)-n_{e}^{2}\left(\lambda_{3}\right)}}\right\}
$$

$$
\theta=85.5^{0}
$$

## Temperature tuning the crystal

Since the refractive index is temperature dependent it may be possible to phase-match at $90^{\circ}$ by exploiting this variation, i.e.,

$$
\left(\frac{n_{0}}{351}+\frac{n_{0}^{\prime}}{789}-\frac{n_{e}}{243}=\Delta T \times\left\{\left(\frac{d n_{0} / d T}{351}\right)_{351}+\left(\frac{d n_{0} / d T}{790}\right)_{790}-\left(\frac{d n_{e} / d T}{243}\right)_{243}\right\}\right)
$$

Solve to find $\Delta T$.
Finally, the crystal can be cut so as to have Brewster faces for the fundamental beams; the SHG is orthogonally-polarised and suffers some Fresnel loss in a single pass out of the crystal.

## The final crystal desion



