Non-linear Effects

100 mW of cw output from a package $3.8 \mathrm{~cm} \times 3.8 \mathrm{~cm} \times$ 10 cm . The device consists of a chip of 0.5 mm of Nd:YV04 in contact with a 2 mm KTP crystal; 500 mW of laser output at 809 nm is used to pump the device.

And inside the box...

Doubling and doubling again!

Non-linear Optics

$>$ The polarisation, P, can be described in terms of the susceptibility tensor, χ. We can now include any nonlinear response of the medium as shown below.
$>$ Note that in general the electric field and the polarisation need NOT be collinear.
$\mathbf{D}=\varepsilon_{0} \varepsilon_{r} \mathbf{E}=\varepsilon_{0} \mathbf{E}+\mathbf{P}=\varepsilon_{0} \mathbf{E}(1+\chi)$

$$
P_{i}=\varepsilon_{0} \sum \chi_{i j} E_{j}
$$

Non-linear Effects:

(Classification by order)

$$
P_{i}^{n}(t)=\varepsilon_{0} \chi^{(n)}\left(-\omega_{\sigma} ; \omega_{1}, \omega_{2}, \omega_{3}\right) E_{j} E_{k} E_{\ell} \ldots \exp \left\{-i \omega_{\sigma} t\right\}
$$

Optical Effect	Order of χ	Indices	Examples
Linear absorption	1	$-\omega ; \omega$	Laser absorption at low intensity
Pockels effect	2	$-\omega ; 0, \omega$	Electro-optic modulators
Second harmonic generation	2	$-2 \omega ; \omega, \omega$	Frequency doubling of laser light
Sum \& difference generation	2	$-\omega_{3} ; \omega_{1}, \omega_{2}$	Generation of new frequencies: fixed + tunable
D.C. Kerr effect	3	$-\omega ; 0,0, \omega$	Electro-optic devices
Third harmonic generation	3	$-3 \omega ; \omega, \omega, \omega$	
Four-wave mixing	3	$-\omega_{4} ; \omega_{1}, \omega_{2}, \omega_{3}$	Holography
Optical Kerr effect	3	$-\omega ; \omega,-\omega, \omega$	Intensity-dependent refractive index
Two-photon absorption	3	$-\omega ;-\omega, \omega, \omega$	Doppler-free spectroscopy

Anisotropic binding of an electron in a crystal

The springs have different stiffness for different directions of the electron's displacement from its equilibrium position within the lattice.

The polarisation, and therefore the refractive index, will be different in
 different directions

Index ellipsoid and the principal axes

The Permittivity Tensor

$$
\left(\begin{array}{l}
D_{x} \\
D_{y} \\
D_{z}
\end{array}\right)=\varepsilon_{0}\left(\begin{array}{lll}
\varepsilon_{x x} & \varepsilon_{x y} & \varepsilon_{x z} \\
\varepsilon_{y x} & \varepsilon_{y y} & \varepsilon_{y z} \\
\varepsilon_{z x} & \varepsilon_{z y} & \varepsilon_{z z}
\end{array}\right)\left(\begin{array}{l}
E_{x} \\
E_{y} \\
E_{z}
\end{array}\right)
$$

This represents a 3D ellipsoidal surface with axes x, y, z
With respect to the symmetry axes XYZ this becomes (by suitable rotation):

$$
\left(\begin{array}{c}
D_{X} \\
D_{Y} \\
D_{Z}
\end{array}\right)=\varepsilon_{0}\left(\begin{array}{ccc}
\varepsilon_{X} & 0 & 0 \\
0 & \varepsilon_{Y} & 0 \\
0 & 0 & \varepsilon_{Z}
\end{array}\right)\left(\begin{array}{c}
E_{X} \\
E_{Y} \\
E_{Z}
\end{array}\right)
$$

The equation of the index ellipsoid is thus,

$$
\frac{X^{2}}{n_{o}^{2}}+\frac{Y^{2}}{n_{o}^{2}}+\frac{Z^{2}}{n_{e}^{2}}=1
$$

Electro-optic effect

Distortion of index ellipsoid caused by The application of an electric field
xy section of Index Ellipsoid

Uniaxial or Biaxial?

(a)

(a)Biaxial crystal - two optical axes.
(b) Positive uniaxial crystal one optical axis $n_{e} \geq n_{0}$
(c) Negative uniaxial crystal one optical axis $n_{e} \leq n_{0}$

The Index Ellipsoid

$$
\eta=\varepsilon_{0} / \varepsilon=1 / n^{2}
$$

$$
\sum_{i j} \eta_{i j} x_{i} x_{j}=1
$$

3D ellipsoid surface is given by:

$$
\frac{x^{2}}{n_{1}^{2}}+\frac{y^{2}}{n_{2}^{2}}+\frac{z^{2}}{n_{3}^{2}}+\frac{2 y z}{n_{4}^{2}}+\frac{2 x z}{n_{5}^{2}}+\frac{2 x y}{n_{6}^{2}}=1
$$

Linear Electro-optic Tensor

> The r-coefficients are related to the crystal symmetry

$$
\Delta\left(\frac{1}{n^{2}}\right)=\sum r_{i j k} E_{k}^{0}
$$

The 27-elements reduce to 18 because of invariance w.r.t. i, j interchange

$$
\left[\begin{array}{c}
\Delta\left(\frac{1}{n^{2}}\right)_{1} \\
\Delta\left(\frac{1}{n^{2}}\right)_{2} \\
\Delta\left(\frac{1}{n^{2}}\right)_{3} \\
\Delta\left(\frac{1}{n^{2}}\right)^{4} \\
\Delta\left(\frac{1}{n^{2}}\right)_{5} \\
\Delta\left(\frac{1}{n^{2}}\right)_{6}
\end{array}\right]=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
r_{41} & 0 & 0 \\
0 & r_{52} & 0 \\
0 & 0 & r_{63}
\end{array}\right]\left[\begin{array}{l}
E_{1}^{0} \\
E_{2}^{0} \\
E_{3}^{0}
\end{array}\right]
$$

The Electro-optic Ellipsoid

Taylor expand the refractive index

$$
n(E)=n_{0}+a_{1} E+\frac{1}{2} a_{2} E^{2} \ldots
$$

in the electric field
And remembering,

$$
\eta=\varepsilon_{0} / \varepsilon=1 / n^{2}
$$

So,

$$
\Delta \eta=(d \eta / d n) \Delta n=\left(-2 / n^{3}\right)\left(-\frac{1}{2} r n^{3} E-\frac{1}{2} s n^{3} E^{2} . .\right)
$$

$$
n(E)=n_{0}-\frac{1}{2} n^{3} r E-\frac{1}{2} n^{3} s E^{2}+\ldots
$$

With the identities,

$$
r=-2 a_{1} / n^{3} \quad s=-a_{2} / n^{3}
$$

Index Ellipsoid with Electric Field

$$
\begin{aligned}
& \eta_{i j}(E)=\varepsilon_{0} / \varepsilon=1 / n^{2}=\eta_{i j}+\sum_{k} r_{i j k} E_{k}+\sum_{k, \ell} s_{i j k \ell} E_{k} E_{\ell} \ldots \\
& \sum_{i j} \eta_{i j} x_{i} x_{j}=1 \\
& n(E)=n_{0}+a_{1} E+\frac{1}{2} a_{2} E^{2}+\ldots \\
& n(E)=n_{0}-\frac{1}{2} n^{3} r E-\frac{1}{2} n^{3} s E^{2}+\ldots
\end{aligned}
$$

Electro-optic tensor

Case of ADP and isomorphs

With a field applied in the z-direction the ellipsoid is distorted in the $x y$-plane

$$
\frac{x^{2}}{n_{0}^{2}}+\frac{y^{2}}{n_{0}^{2}}+\frac{z^{2}}{n_{e}^{2}}+2 r_{63} x y E_{z}^{0}=1
$$

Rotation by 45° about the z -axis transforms to the ($\mathrm{x}^{\prime}, \mathrm{y}^{\prime}, \mathrm{z}^{\prime}$) co-ordinate system

$$
\left(\frac{1}{n_{0}^{2}}+r_{63} E_{z}^{0}\right) x^{\prime 2}+\left(\frac{1}{n_{0}^{2}}-r_{63} E_{z}^{0}\right) y^{\prime 2}+\frac{z^{\prime 2}}{n_{e}^{2}}=1
$$

The transformed axes

So, given, $r_{63} E_{z}^{0} \ll n_{o}^{-2}$
we can write, $n_{x^{\prime}}^{-2}=n_{o}^{-2}+r_{63} E_{z}^{0}$

$$
\text { i.e., } \quad n_{x^{\prime}}=n_{0}\left(1+n_{0}^{2} r_{63} E_{z}^{0}\right)^{-1 / 2}
$$

Variable phase-plate

With light polarised along the original x -direction

$$
\Delta n=\left|n_{x^{\prime}}-n_{y^{\prime}}\right|=n_{0}^{3} r_{63} E_{z}^{0}
$$

For a half-wave plate:

$$
\phi=\frac{2 \pi}{\lambda} \Delta n d=\pi
$$

Giving a half-wave Voltage:

$$
V_{\pi}=\frac{\lambda}{2 n_{0}^{3} r_{63}}
$$

(Note: the field
\& propagation directions are the same here!)

Amplitude modulation

The susceptibility tensor

From Maxwells eqns, a plane, monochromatic wave satisfies

$$
\mathbf{k} \times(\mathbf{k} \times \mathbf{E})+\frac{\omega^{2}}{c^{2}} \mathbf{E}=-\frac{\omega^{2}}{c^{2}} \boldsymbol{\chi} \mathbf{E}
$$

$$
\left(-k_{y}^{2}-k_{z}^{2}+\frac{\omega^{2}}{c^{2}}\right) E_{x}+k_{x} k_{y} E_{y}+k_{x} k_{z} E_{z}=-\frac{\omega^{2}}{c^{2}} \chi_{11} E_{x}
$$

Propagate the wave along the principal z- axis so that now

$$
\begin{aligned}
\left(-k^{2}+\frac{\omega^{2}}{c^{2}}\right) E_{x} & =-\frac{\omega^{2}}{c^{2}} \chi_{11} E_{x} \\
\left(-k^{2}+\frac{\omega^{2}}{c^{2}}\right) E_{y} & =-\frac{\omega^{2}}{c^{2}} \chi_{22} E_{y} \\
\frac{\omega^{2}}{c^{2}} E_{z} & =-\frac{\omega^{2}}{c^{2}} \chi_{33} E_{z}
\end{aligned}
$$

The wave-vector surface

$E_{z}=0$; the wave is transverse, so

$$
\begin{aligned}
& k=\frac{\omega}{c} \sqrt{1+\chi_{11}}=\frac{\omega}{c} \sqrt{K_{11}}=\frac{\omega}{c} n_{1} \\
& k=\frac{\omega}{c} \sqrt{1+\chi_{22}}=\frac{\omega}{c} \sqrt{K_{22}}=\frac{\omega}{c} n_{2}
\end{aligned}
$$

For non-trivial solutions

$$
\left.\begin{array}{ccc}
\left(\frac{n_{1} \omega}{c}\right)^{2}-k_{y}^{2}-k_{z}^{2} & k_{x} k_{y} & k_{x} k_{z} \\
k_{y} k_{x} & \left(\frac{n_{2} \omega}{c}\right)^{2}-k_{x}^{2}-k_{z}^{2} & k_{y} k_{z} \\
k_{z} k_{x} & k_{z} k_{y} & \left(\frac{n_{3} \omega}{c}\right)^{2}-k_{x}^{2}-k_{y}^{2}
\end{array} \right\rvert\,=0
$$

which gives the equation for a circle and an ellipse

$$
\begin{aligned}
k_{x}^{2}+k_{y}^{2} & =\left(\frac{n_{3} \omega}{c}\right)^{2} \\
\frac{k_{x}^{2}}{\left(n_{2} \omega / c\right)^{2}}+\frac{k_{y}^{2}}{\left(n_{1} \omega / c\right)^{2}} & =1
\end{aligned}
$$

The wave-vector surface

The intercept of the k -surface with each plane xy, xz \& yz Consists of one circle and one ellipse. The surface is double suggesting there are two possible values for k for any direction of the vector \mathbf{k}. There are two phase velocities corresponding to two orthogonal polarisations. At the point P the two values are equal; this is the optical axis.

Poynting's vector- \mathbf{S} \& wavevector- k

Electric field \& Displacement Vector

$$
\begin{aligned}
& \mathbf{k} \times \mathbf{H}=-\omega \mathbf{D} \\
& \mathbf{k} \times \mathbf{E}=\omega \mu_{0} \mathbf{H}
\end{aligned}
$$

Summary

Linear optics: $D=\varepsilon_{0} \overline{\overline{\varepsilon_{r}}} E \Longrightarrow P_{i}=\varepsilon_{0} \chi_{i j} E_{j}$

Non-linear optics:

$$
P^{N L}(\omega)=\varepsilon_{0}\left[\chi^{(1)} E\left(\omega_{1}\right)+\chi^{(2)} E\left(\omega_{1}\right) E\left(\omega_{2}\right)+\chi^{(3)} E\left(\omega_{1}\right) E\left(\omega_{2}\right) E\left(\omega_{3}\right)+\ldots \ldots . .\right]
$$

Linear electro-optic:

$$
P^{N L}(\omega)=\varepsilon_{0}\left[\chi^{(1)}+\chi^{(2)} E^{D C}\right] E\left(\omega_{1}\right)
$$

(Uniaxial crystal becomes biaxial when the field is applied)

$$
\Delta n=\left|n_{x^{\prime}}-n_{y^{\prime}}\right|=n_{0}^{3} r_{63} E^{D C}
$$

$$
V_{\lambda / 2}=\lambda /\left(2 n_{0}^{3} r_{63}\right)
$$

