Non-linear Effects

100mW of cw output from a package 3.8cm x 3.8 cm X
10cm.The device consists of a chip of 0.5mm of NMY
In contact with a 2mm KTP crystal, 500mW of laser
output at 809nm is used to pump the device.




And Inside the box.




Ing and doubling again!
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Nonrtlinear Optics

> The polarisationP, can be described In terms of the
susceptibilitytensor, y. We can now include any non
linear response of the medium as shown below.

> Note that in general the electric field and the
polarisation need NOT be collinear.
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Non-linear Effects:
(Classification by order)

P (t) = eox\™) (—we; wi,wa, w3) E;ELEy...exp{—twst}

Optical Effect

Order of y

Indices

Examples

Linear absorption

1

—W; W

Laser absorption at low intensity

Pockels effect

—w; 0, w

Electro-optic modulators

Second harmonic generation

—2w; w,w

Frequency doubling of laser light

Sum & difference generation

—W3 W1, W2

Generation of new frequencies: fixed + tunable

D.C. Kerr effect

—w; 0,0, w

Electro-optic devices

Third harmonic generation

—3w; w, w,w

Four-wave mixing

—Wy;W1,W2,Ws

Holography

Optical Kerr effect

—W; W, —W,w

Intensity-dependent refractive index

Two-photon absorption

W W W WD Do Do

—W; —W, W, w

Doppler-free spectroscopy




Anisotropic binding ofi an electron in a

The springs have
different stiffness for
different directions
of the electrois
displacement from
its equilibrium
position within the
|attice.

The polarisation, and
therefore the
refractive index, will
pe different in
different directions




Indexellipsoidand the principal axes




The Permittivity Tensor

Eyy
Ezy

This represents a 3D ellipsoidal surface with axes z, vy, 2

With respect to the symmetry axes XYZ this becomes (by suitable rotation):

The equation of the index ellipsoid is thus,
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Electre.optic effect

Xy section of Index Ellipsoid

Distortion of index ellipsoid caused b
The application of an electric field

d dc _
E™ along z-axis E™ = 0




Uniaxial or Biaxial?

(a)Biaxial crystal-two optical
axes.

(b) Positiveuniaxial crystal—
one optical axife= no

(c) Negativeuniaxialcrystal—
one optical axife < Mo




The Index Ellipsoid

3D ellipsoid surface Is given by:

y 22 2uzr  2xz 2 y
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Linear Electreoptic Tensor

Ther-coefficients 1
are related to the [EA (nZ) Z ”’"ijkE/S
crystal symmetry

The27-elementgeduce to 18 because of iInvariamee.t.,
I,] Interchange




The Electreoptic Ellipsoid

Taylor expand the X .
refractive index KIS LR o LT St

In the electric field

And remembering,
S0,
An = (dn/dn)An =

n(E) =ng — 3n°rE — in3sE?

With the identities




Index Ellipsoid with Electric Field

77z'j (E) — — ”h‘j + Zk ’T'q;jk;Ek + ijg Sr,;jkgEkEg....
D Mitiag =1
ij
ng + a1 B + %CLQEQ + ...

= ng — %'n?"r‘E — %ngsEQ + ...




Electrcoptic tensor

r—> Physical symmetry

= 3

73
23
33
4>
53
63

Crystal symmetry
for ADF - J




Case of ADP and Isomorphs

With a field applied in the-direction the ellipsoid Is
distorted in thexy-plane

Rotation by 45about the zaxis transforms to the (xy’, )
co-ordinate system




The transformed axes

2 2 0
n., = n,° + rel;

we can write

J




Variable phasplate

With light polarised
along the original

N 3 0
) ) A??f — ‘}Zr;r" - )z’r'y" —_— J?}(}IE‘):}EZ
X-direction

For a haliwave plate: O = Z_W And = 7

(Note: the fiela
& propagation
directions are
the same herel)

Giving a haltwave
Voltage:




Amplitude modulation
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The susceptibility tensor
FromMaxwellsegns > >

a plane, monochromati GRS S S ) e JEp—Y, )
wave satisfies C i

Y
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Propagate the wave
along the principal
Z- axIs so that now




The wavevector surface

Ez= 0; the wave is %\/1 T, = %«./K11 —~ %nl

transverse, so W w W
;\/1 tXop = —V A= —ns

For nortrivial solutions

(anw)Q o k; T kf kmk’y k.
ks (m22)2 _ g2 _ g2 iy k. ~ 0
k., bk, (kR

which gives the equation
for a circle and an ellipSEas:

(naw/c)

+ z = 1
2 (mw/c)?




The wavevector surface

4§
Optic axis

The intercept of the
k-surface with each
plane xy, xz & yz
Consists of one circle
and one ellipse. The
surface is double
suggesting there

are two possible values
for k for any direction

of the vectok. There are
two phase velocities
corresponding to two
orthogonal polarisations.
At the point P the two
values are equal; this is

the optical axis







Electric field & Displacement Vector




Summary

Linear optics:

Non-linear optics:

PYE(w) = = {\“ 'E (w1) + X E (1) E (w2) + X'PE (w1) E (w2) E (w3) +




