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Domain of Linear Optics

From electromagnetism courses we recall

D = ε0εrE = ε0E+P = ε0E(1 + χ) (1)
Also at optical frequencies,

n =
√
εr = (1 + χ)1/2 ∼ 1 +

1

2
χ.... (2)

Pi = ε0
∑

χijEj (3)

The medium may not be isotropic and homogeneous; the polarisation P will not in general be
collinear with E, and the susceptibility χ(n) and the permittivity ε are tensors (in this case of rank
2)

Figure 1: Linear versus nonlinear electric field effects

Domain of Non-linear Optics

P (ω) = ε0
∑

[χ
(1)
ij Ej(ω1) + χ

(2)
ijkEj(ω1)Ek(ω2) + χ

(3)
ijk`Ej(ω1)Ek(ω2)E`(ω3)......] (4)

Typical values for the second order coeffi cient d = χ(2)/2ε0 = 10−24 to 10−21 AsV−2. Typical values
for the third order non-linear susceptibility χ(3) is 10−29 to 10−34 (MKS units) for glasses, crystals,
semiconductors and organics materials of interest. Only crystals with NO centre of symmetry1 have
a finite second order susceptibility; for other materials the first non-linear coeffi cient is χ(3)

1 If a crystal possesses inversion symmetry the application of an electric field E along some direction causes a change
∆n = sE in the index. If the direction of the field is reversed the change becomes ∆n = s[−E], but inversion symmetry
requires the two directions to be physically equivalent. This requires s = −s which is possible only for s = 0. Thus, linear,
Pockels cystals require NO centre of symmetry. Note also that these crystal are piezo-electric.
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Figure 2: Index ellipsoid

Index Ellipsoid for a Uniaxial System
The optical properties of an anisotropic medium can

be characterised by a geometric construction called the index ellipsoid where η is the so-called im-
permeability tensor related to the refractive index as given above. The principal axes of the ellipse
are the optical principal axes; the principal dimensions along these axes are the principal refractive
indices: n1, n2, n3. (Note also that the phase velocity of the wave is proportional to 1/n). Uniaxial
means nx = ny 6= nz (the optical axis). See appendix.

x2 + y2

n20
+
z2

n2e
= 1 (5)

Thus for an arbitrary angle θ to the z−axis as shown,

n(θ) =

{
cos2 θ

n20
+

sin2 θ

n2e

}−1/2
(6)

Linear Electro-optic Effect (Pockels).

When a steady electric field E with components (E1, E2, E3) is applied to the crystal the elements
of the tensor η are altered so that each of the 9 elements becomes a function of E and the ellipsoid
changes shape. Thus, in equation 4 we let Ek(ω2) = E0 - a d.c. electric field so that,

P (ω) = ε0[χ
(1)
ij + χ

(2)
ijkE

0]E(ω) (7)

Since χ is related to ε, the equation can be re-written in terms of the refractive index where each
of the elements ηij(E), is a function of the appropriate field components, i.e.

ηij(E) = ε0/ε = 1/n2 = ηij +
∑

k rijkEk +
∑

k,l sijklEkEl........
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Figure 3: Index ellipsoid for a 4̄2m crystal

Terms linear in the applied field represent the Pockels effect; those quadratic in E represent the
Kerr effect. Alternatively, we could write, by Taylor expansion,2 the refractive index in the presence
of an electric field as follows,

n(E) = n0 + a1E + 1
2a2E

2......

This introduces the connection between the linear electro-optic coeffi cients and the polarisation of
the medium, see equation (9).

Linear Electro-optic Tensor

The change to the index ellipsoid when an electric field is applied can be written as follows,

x2

n21
+
y2

n22
+
z2

n23
+

2yz

n24
+

2xz

n25
+

2xy

n26
= 1 (8)

Clearly if the indices 1, 2, 3,...are chosen to be coincident with the principal dielectric axes equation
8 must reduce to equation 5 in the absence of the electric field, i.e. that 1/n4,5,6 = 0

This introduces the linear electro-optic tensor rLEO

∆

(
1

n2

)
=
∑

rijkE
0
k (9)

This is a 3×3 ×3 matrix, i.e., it has 27 elements. Of these, physical symmetry reduces the number
to 18 independent elements, written as a 3×6 matrix. [rijk = ∂ηij/∂Ek where η = ε0ε

−1 and the index
ellipsoid is given by

∑
ηijxixj = 1 where i, j = 1, 2, 3 with principal indices of refraction n1, n2, n3

(see footnote 2) and η is symmetric with respect to interchange of indices i, j. Thus, it follows r (and
d) are also invariant under i, j interchange. It is therefore conventional to reduce the i, j index to one
symbol I with the correspondence as given in the “look up”table 1]

2 By Taylor expanding the refractive index about E = 0 we can write
n(E) = n0 + a1E + 1

2
a2E

2...
where the coeffi cients are derivatives of the refractive index with E in the normal way. Defining r = −2a1/n

3 and
s = −a2/n3 we have for η = ε0/ε = 1/n2 the following field dependent change ∆η = (dη/dn)∆n = (−2/n3)(− 1

2
rn3E −

1
2
sn3E2..).
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Figure 4: Rotation of axes by 450 about the optical axis.

j ↓ i−→ 1 2 3
1 1 6 5
2 6 2 4
3 5 4 3

Table 1 Look up table for i, j −→ I

Any particular Pockels crystal will further reduce the number of non-zero elements as follows.
As an example, consider the uniaxial crystal ADP (ammonium dihydrogen phosphate) which has
tetragonal (4̄2m) symmetry. The index ellipsoid (see figure 3) is represented by



∆
(
1
n2

)
1

∆
(
1
n2

)
2

∆
(
1
n2

)
3

∆
(
1
n2

)
4

∆
(
1
n2

)
5

∆
(
1
n2

)
6

 =


0 0 0
0 0 0
0 0 0
r41 0 0
0 r52 0
0 0 r63


 E01
E02
E03

 (10)

The crystal is now biaxial .
Or in terms of the polarisation of the medium3, which we shall use for optical fields in harmonic

generation,

 Px
Py
Pz

 = ε0

 0 0 0 d14 0 0
0 0 0 0 d25 0
0 0 0 0 0 d36




E2x
E2y
E2z

2EyEz
2ExEz
2ExEy

 (11)

If we take as the direction of the applied d.c. field E0 = E0z = E03 then the new index ellipsoid will
given by

x2

n20
+
y2

n20
+
z2

n2e
+ 2r63xyE

0
z = 1 (12)

3 The coeffi cients d and r are related as follows: d =
ε0χ

(2)

2
and r ∼ − 4d

ε0n4
Be careful about factors of 2 arising

from the use of a complex field. For the Pockels case let the d.c. and optical fields be represented as E(t) = E0 +
Re{E(ω) exp(−iωt)}.For the case of H.G. let the coupled optical fields be represented as E(t) = Re{E(ω1) exp(−iω1t) +
E(ω2) exp(−iω2t)}.

For S.H.G. in particular let ω1 = ω2

5



Figure 5: Rotation of Axes

A clockwise rotation take axes XY onto xy:(Equivalently a positive angle to the positive x-axis
amounts to an anticlockwise rotation). The relationship between the different co-ordinate systems

for a 450 rotation is given by simple trigonometry as follows

(
x
y

)
=

1√
2

(
1 −1
1 1

)(
X
Y

)
(13)

or, (
X
Y

)
=

1√
2

(
1 1
−1 1

)(
x
y

)
(14)

In the present case x, y represent the original axes which are transformed to x′, y′ (≡ X,Y in the
figure) by an anticlockwise rotation.Thus inserting.

x = 1/
√

2
(
x′ − y′

)
and y = 1/

√
2
(
x′ + y′

)
(15)

into the equation for the ellipsoid 12 we have

(x′ − y′)2
2n2o

+
(x′ + y′)2

2n2o
+

2 (x′ − y′) (x′ + y′)

2
r63E

0
z +

z2

n2e
= 1 (16)

which when rearranged gives

x′2

n2o
+
y′2

n2o
+
(
x′2 − y′2

)
r63E

0
z +

z2

n2e
= 1 (17)

leading to

x′2

n2o

(
1 + n2or63E

0
z

)
+
y′2

n2o

(
1− n2or63E0z

)
+
z2

n2e
= 1 (18)

This identifies

1

n2x′
=

(
1 + n2or63E

0
z

)
n2o

(19)

Or equivalently

n2x′ =
n2o

(1 + n2or63E
0
z )

(20)
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Figure 6: Electro-optic modulator used as an intensity modulator.

Thus, given that r63E0z << n−2o we have nx′ = n0(1 + n20r63E
0
z )−1/2 ∼ n0(1 − 1

2n
2
0r63E

0
z ) and

similarly for ny′ . This gives finally

∆n = |nx′ − ny′ | = n30r63E
0
z (21)

To act as a half-wave plate the phase induced by the field must be π radians, so

φ =
2π

λ
∆nd = π (22)

and the half-wave voltage is

Vπ =
λ

2n30r63
(23)
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Appendix
Wave-vector surface

Linear but tensorial χ  Px
Py
Pz

 = ε0

 χ11 χ12 χ13
χ21 χ22 χ23
χ31 χ32 χ33

 Ex
Ey
Ez

 (24)

The wave equation including polarisation but not conduction currents J is of the form

∇×(∇×E) +
1

c2
∂2E

∂t2
= − 1

c2
χ
∂2E

∂t2
(25)

The transparent, insulating crystal can thus sustain a plane monochromatic wave (E0 exp i{k.r−
ωt}) provided the propagation vector satisfies the equation

k×(k×E) +
ω2

c2
E = −ω

2

c2
χE (26)

The cartesian components of this equation are thus(
−k2y − k2z +

ω2

c2

)
Ex + kxkyEy + kxkzEz = −ω

2

c2
χ11Ex (27)

and similarly for y− and z− components.
To interpret this result let the wave propagate along one of the principal axes of the crystal, say

z. In this case kz = k and kx = ky = 0 and the components become

(
−k2 +

ω2

c2

)
Ex = −ω

2

c2
χ11Ex (28)(

−k2 +
ω2

c2

)
Ey = −ω

2

c2
χ22Ey (29)

ω2

c2
Ez = −ω

2

c2
χ33Ez (30)

The last equation suggests Ez = 0 because neither χ or ω is zero. The wave is transverse. On the
other hand, the first two equations show

k =
ω

c

√
1 + χ11 =

ω

c

√
K11 =

ω

c
n1 (31)

k =
ω

c

√
1 + χ22 =

ω

c

√
K22 =

ω

c
n2 (32)

where n1 , n2 and n3 are the principal indices of refraction.

Now the equations for the components [27] lead to the following condition for non-trivial solution
for the field components not to vanish, i.e.∣∣∣∣∣∣

(n1ωc )2 − k2y − k2z kxky kxkz
kykx (n2ωc )2 − k2x − k2z kykz
kzkx kzky (n3ωc )2 − k2x − k2y

∣∣∣∣∣∣ = 0 (33)

This equation gives the wave-vector surface for propagation in the crystal. Thus, for example in
the kz = 0 plane the determinant gives a product of two factors either or both of which must reduce
to zero. This condition gives
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Figure 7: Wave-vector surface for an anisotropic crystal
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Figure 8: Walk off. Poynting’s vector and k are no longer collinear

k2x + k2y =
(n3ω

c

)2
(34)

k2x
(n2ω/c)2

+
k2y

(n1ω/c)2
= 1 (35)

which can be seen as the equation of a circle and an ellipse respectively. For a uniaxial crystal
n1 = n2 6= n3 while for biaxial crystal all principal indices are different.
Recognising that k = v(ω/v2) we can derive the corresponding determinant equation and con-

struct the phase-velocity surface. Finally we can consider the ray-velocity defined by considering the
propagation of a narrow beam of light in the crystal. The surfaces of constant phase with velocity u
given by

u =
v

cos θ
(36)

where θ represents the angle between Poynting vector S (which gives energy flow) and the k−vector.
When we come to discussing harmonic frequency generation in crystals this effect will be referred to
as walk off .
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