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Domain of Linear Optics

From electromagnetism courses we recall

D = e, E = e0E + P = oE(1 + x) (1)
Also at optical frequencies,
1/2 1
n=+¢c =(1+x) N1+§X~-~ (2)
Py =eo Z Xij Ej (3)

The medium may not be isotropic and homogeneous; the polarisation P will not in general be
collinear with E, and the susceptibility x(™ and the permittivity £ are tensors (in this case of rank
2)

e

Figure 1: Linear versus nonlinear electric field effects

Domain of Non-linear Optics
P(w) =0 Y X\ Ej(w1) + Xop B (w1) Be(wa) + X By (w1) Ep(ws2) Ee(ws)......] (4)

Typical values for the second order coefficient d = y(?) /260 = 1074 to 1072! AsV~2. Typical values
for the third order non-linear susceptibility x® is 10729 to 1034 (MKS units) for glasses, crystals,
semiconductors and organics materials of interest. Only crystals with NO centre of symmetry! have
a finite second order susceptibility; for other materials the first non-linear coefficient is x®)

1 If a crystal possesses inversion symmetry the application of an electric field E along some direction causes a change

An = sE in the index. If the direction of the field is reversed the change becomes An = s[—E], but inversion symmetry
requires the two directions to be physically equivalent. This requires s = —s which is possible only for s = 0. Thus, linear,
Pockels cystals require NO centre of symmetry. Note also that these crystal are piezo-electric.



Figure 2: Index ellipsoid

Index Ellipsoid for a Uniaxial System

The optical properties of an anisotropic medium can
be characterised by a geometric construction called the index ellipsoid where 7 is the so-called im-
permeability tensor related to the refractive index as given above. The principal axes of the ellipse
are the optical principal axes; the principal dimensions along these axes are the principal refractive
indices: ni, ng2, ng. (Note also that the phase velocity of the wave is proportional to 1/n). Uniazial
means n, = n, # n, (the optical axis). See appendix.

Thus for an arbitrary angle 8 to the z—axis as shown,

cos20 sin%6 -1/
i) = { <50+ 2,0 (6)

ng n?
Linear Electro-optic Effect (Pockels).

When a steady electric field F with components (E7, Fa, E3) is applied to the crystal the elements
of the tensor 77 are altered so that each of the 9 elements becomes a function of E and the ellipsoid
changes shape. Thus, in equation 4 we let Ej(ws) = E° - a d.c. electric field so that,

® E%E(w) (7)

P(w) = eolx}) + x\o)

(]

Since y is related to €, the equation can be re-written in terms of the refractive index where each
of the elements 7,;(E), is a function of the appropriate field components, i.e.

0;;(E) = co/e = 1/n* = 0y + Y g riji Bk + gy Siht EnEipevv....
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Figure 3: Index ellipsoid for a 42m crystal

Terms linear in the applied field represent the Pockels effect; those quadratic in E represent the
Kerr effect. Alternatively, we could write, by Taylor expansion,? the refractive index in the presence
of an electric field as follows,

n(E)=no+a E+ %agEQ ......

This introduces the connection between the linear electro-optic coefficients and the polarisation of
the medium, see equation (9).

Linear Electro-optic Tensor

The change to the index ellipsoid when an electric field is applied can be written as follows,

2 2 2

x z 2uz  2xz 2x

Sttt Syt =1 (8)
ny ny; nj 1y ny g

Clearly if the indices 1, 2, 3,...are chosen to be coincident with the principal dielectric axes equation

8 must reduce to equation 5 in the absence of the electric field, i.e. that 1/n456 =0

This introduces the linear electro-optic tensor €

A(z) = Tt )

This is a 3 x 3 x3 matrix, i.e., it has 27 elements. Of these, physical symmetry reduces the number
to 18 independent elements, written as a 3 x 6 matrix. [rijk. = 87717 /OE), where n = goe ! and the index
ellipsoid is given by Zm‘jiﬁi%‘ = 1 where 4,5 = 1,2,3 with principal indices of refraction ni,ns,ns
(see footnote 2) and 7 is symmetric with respect to interchange of indices 4, j. Thus, it follows r (and
d) are also invariant under 4, j interchange. It is therefore conventional to reduce the 4, j index to one
symbol I with the correspondence as given in the “look up” table 1]

2 By Taylor expanding the refractive index about E = 0 we can write

n(E) =no+amFE+ %agEz...

where the coefficients are derivatives of the refractive index with E in the normal way. Defining 7 = —2a1/n® and
s = —az/n® we have for 7 = g0/e = 1/n® the following field dependent change An = (dn/dn)An = (—2/n*)(—3rn*E —
Lsn3E2.).
38



i, = n, + 5 rgk,

Figure 4: Rotation of axes by 45 about the optical axis.

ili—[1]2[3
1 1/65
2 624
3 5143

Table 1 Look up table for ¢,5 — I
Any particular Pockels crystal will further reduce the number of non-zero elements as follows.
As an example, consider the uniaxial crystal ADP (ammonium dihydrogen phosphate) which has
tetragonal (42m) symmetry. The index ellipsoid (see figure 3) is represented by

(A ] [o o 0]

A(%)g 0 0 0 0

A () 0o o0 o0 1

ALY T 00 || 10
A(%)s 0 752 0 ’

LAGE)gd L O 0 7es ]

The crystal is now biazial.

Or in terms of the polarisation of the medium?®, which we shall use for optical fields in harmonic
generation,

dy 0 0
0 dys O z (11)
0 0 dsg

Py = &0

o O O
O O O

0
0
0

2B, By |
If we take as the direction of the applied d.c. field E® = E? = EY then the new index ellipsoid will
given by

2 2 2
T Y z
72+*2+72+2T63$yE2:1 (12)
ng ng ng
5 EUX(2)
°  The coefficients d and r are related as follows: d = and 7 ~ — Be careful about factors of 2 arising

Eon4
from the use of a complex field. For the Pockels case let the d.c. and optical fields be represented as E(t) = E° +
Re{E(w) exp(—iwt) }.For the case of H.G. let the coupled optical fields be represented as E(t) = Re{E(w1) exp(—iw1t) +
E(w2) exp(—iwat)}.
For S.H.G. in particular let w1 = w2
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Figure 5: Rotation of Axes

A clockwise rotation take axes XY onto zy:(Equivalently a positive angle to the positive x-axis
amounts to an anticlockwise rotation). The relationship between the different co-ordinate systems
for a 45° rotation is given by simple trigonometry as follows

. <§>:12<1_11)(§5> (13)
<)§>:¢1§(—11 1)<y) (14)

In the present case z,y represent the original axes which are transformed to 2/,y’ (= X,Y in the
figure) by an anticlockwise rotation.Thus inserting.

le/x@(m'—y') andyzl/\@(m'—}—y') (15)
into the equation for the ellipsoid 12 we have
(@ —y)? @ +y)? 2@ —y)@'+y) o, 2
E — =1 16
2n2 * 2n?2 - 2 resbs n? (16)
which when rearranged gives
' 3/2 2 2 0 2
n—g+n—%+(x —y)rﬁgEern—g:l (17)
leading to
113,2 12 22
ﬁ (1 + ngTﬁgEg) =+ % (1 — ngr(ngg) + ﬁ =1 (18)
o o e
This identifies
1 1 4 n2resEY
L _ (L nireB?) (19)
n, n2
Or equivalently
2
n2, = Do (20)

(1 + ngr63Eg)
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Figure 6: Electro-optic modulator used as an intensity modulator.

Thus, given that rg3E? << n.2 we have ny = ng(l + n%r(;gEg)_l/Q ~ no(l — %R%T(;;J,Eg) and
similarly for n,. This gives finally

= n(3)1“63E2 (21)

An = |ng — ny

To act as a half-wave plate the phase induced by the field must be 7 radians, so

2
6= %And =7 (22)

and the half-wave voltage is

A

= — 23
2%87’63 ( )

|2



Appendix

Wave-vector surface

Linear but tensorial x

P, X11 X12 Xi3 E,
Py | =¢co| Xo1 Xo2 Xos E, (24)
P, X31 X32 X33 E,

The wave equation including polarisation but not conduction currents J is of the form

10°E 1 _0O°E

VAVXEIT 2 = aXor

(25)

The transparent, insulating crystal can thus sustain a plane monochromatic wave (Egexpi{k.r —
wt}) provided the propagation vector satisfies the equation

w? w?
kx(kxE)+ wE=—-—xE 26
x(x B) + B = 2 x (26)
The cartesian components of this equation are thus
) ) w? w?

and similarly for y— and z— components.

To interpret this result let the wave propagate along one of the principal axes of the crystal, say
z. In this case k., = k and k; = k; = 0 and the components become

w2 w2
<—k2 + 2) Ey = ——=xuks (28)
c ¢
2 2
w w
<_k2 + Cg) E, = _07X22Ey (29)
w2 w2
CjEz = —67X33Ez (30)

The last equation suggests E, = 0 because neither x or w is zero. The wave is transverse. On the
other hand, the first two equations show

w w

k = V14+x1 = - K1 = an (31)
w w

k = V14 X9y = - Koy = an (32)

where nq ,n9 and ng are the principal indices of refraction.

olE€Ea &

Now the equations for the components [27] lead to the following condition for non-trivial solution
for the field components not to vanish, i.e.

(mae)? — g2 — 2 ok ok

c Yy z Y
kyk, ("i“’)2 — kg — kg kyk. =0 (33)
koK, koK, ()2 — k2 — k2

This equation gives the wave-vector surface for propagation in the crystal. Thus, for example in
the k. = 0 plane the determinant gives a product of two factors either or both of which must reduce
to zero. This condition gives
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Figure 7: Wave-vector surface for an anisotropic crystal
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Figure 8: Walk off. Poynting’s vector and k are no longer collinear

ngw\ 2
4k = () (34)
2
gk
(naw/c)* * (mw/c)?

which can be seen as the equation of a circle and an ellipse respectively. For a uniaxial crystal
n1 = ng # ng while for biazial crystal all principal indices are different.

-1 (35)

Recognising that k = v(w/v?) we can derive the corresponding determinant equation and con-
struct the phase-velocity surface. Finally we can consider the ray-velocity defined by considering the
propagation of a narrow beam of light in the crystal. The surfaces of constant phase with velocity u
given by .

cosf (36)

where 6 represents the angle between Poynting vector S (which gives energy flow) and the k—vector.

When we come to discussing harmonic frequency generation in crystals this effect will be referred to
as walk off.
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