Non-linear Optics I
 (Electro-optics)

P.E.G. Baird
MT2011

Domain of Linear Optics

From electromagnetism courses we recall

$$
\begin{equation*}
\mathbf{D}=\varepsilon_{0} \varepsilon_{r} \mathbf{E}=\varepsilon_{0} \mathbf{E}+\mathbf{P}=\varepsilon_{0} \mathbf{E}(1+\chi) \tag{1}
\end{equation*}
$$

Also at optical frequencies,

$$
\begin{gather*}
n=\sqrt{\varepsilon_{r}}=(1+\chi)^{1 / 2} \sim 1+\frac{1}{2} \chi \cdots \tag{2}\\
P_{i}=\varepsilon_{0} \sum \chi_{i j} E_{j} \tag{3}
\end{gather*}
$$

The medium may not be isotropic and homogeneous; the polarisation P will not in general be collinear with E, and the susceptibility $\chi^{(n)}$ and the permittivity $\overline{\bar{\varepsilon}}$ are tensors (in this case of rank 2)

Figure 1: Linear versus nonlinear electric field effects

Domain of Non-linear Optics

$$
\begin{equation*}
P(\omega)=\varepsilon_{0} \sum\left[\chi_{i j}^{(1)} E_{j}\left(\omega_{1}\right)+\chi_{i j k}^{(2)} E_{j}\left(\omega_{1}\right) E_{k}\left(\omega_{2}\right)+\chi_{i j k \ell}^{(3)} E_{j}\left(\omega_{1}\right) E_{k}\left(\omega_{2}\right) E_{\ell}\left(\omega_{3}\right) \ldots \ldots\right] \tag{4}
\end{equation*}
$$

Typical values for the second order coefficient $d=\chi^{(2)} / 2 \varepsilon_{0}=10^{-24}$ to $10^{-21} \mathrm{AsV}^{-2}$. Typical values for the third order non-linear susceptibility $\chi^{(3)}$ is 10^{-29} to 10^{-34} (MKS units) for glasses, crystals, semiconductors and organics materials of interest. Only crystals with NO centre of symmetry ${ }^{1}$ have a finite second order susceptibility; for other materials the first non-linear coefficient is $\chi^{(3)}$

[^0]

Figure 2: Index ellipsoid

Index Ellipsoid for a Uniaxial System

The optical properties of an anisotropic medium can be characterised by a geometric construction called the index ellipsoid where $\overline{\bar{\eta}}$ is the so-called impermeability tensor related to the refractive index as given above. The principal axes of the ellipse are the optical principal axes; the principal dimensions along these axes are the principal refractive indices: n_{1}, n_{2}, n_{3}. (Note also that the phase velocity of the wave is proportional to $1 / n$). Uniaxial means $n_{x}=n_{y} \neq n_{z}$ (the optical axis). See appendix.

$$
\begin{equation*}
\frac{x^{2}+y^{2}}{n_{0}^{2}}+\frac{z^{2}}{n_{e}^{2}}=1 \tag{5}
\end{equation*}
$$

Thus for an arbitrary angle θ to the z-axis as shown,

$$
\begin{equation*}
n(\theta)=\left\{\frac{\cos ^{2} \theta}{n_{0}^{2}}+\frac{\sin ^{2} \theta}{n_{e}^{2}}\right\}^{-1 / 2} \tag{6}
\end{equation*}
$$

Linear Electro-optic Effect (Pockels).

When a steady electric field E with components (E_{1}, E_{2}, E_{3}) is applied to the crystal the elements of the tensor $\overline{\bar{\eta}}$ are altered so that each of the 9 elements becomes a function of E and the ellipsoid changes shape. Thus, in equation 4 we let $E_{k}\left(\omega_{2}\right)=E^{0}$ - a d.c. electric field so that,

$$
\begin{equation*}
P(\omega)=\varepsilon_{0}\left[\chi_{i j}^{(1)}+\chi_{i j k}^{(2)} E^{0}\right] E(\omega) \tag{7}
\end{equation*}
$$

Since χ is related to ϵ, the equation can be re-written in terms of the refractive index where each of the elements $\eta_{i j}(E)$, is a function of the appropriate field components, i.e.

$$
\eta_{i j}(E)=\varepsilon_{0} / \varepsilon=1 / n^{2}=\eta_{i j}+\sum_{k} r_{i j k} E_{k}+\sum_{k, l} s_{i j k l} E_{k} E_{l \ldots \ldots \ldots}
$$

Figure 3: Index ellipsoid for a $\overline{4} 2 \mathrm{~m}$ crystal

Terms linear in the applied field represent the Pockels effect; those quadratic in E represent the Kerr effect. Alternatively, we could write, by Taylor expansion, ${ }^{2}$ the refractive index in the presence of an electric field as follows,

$$
n(E)=n_{0}+a_{1} E+\frac{1}{2} a_{2} E^{2} \ldots \ldots
$$

This introduces the connection between the linear electro-optic coefficients and the polarisation of the medium, see equation (9).

Linear Electro-optic Tensor

The change to the index ellipsoid when an electric field is applied can be written as follows,

$$
\begin{equation*}
\frac{x^{2}}{n_{1}^{2}}+\frac{y^{2}}{n_{2}^{2}}+\frac{z^{2}}{n_{3}^{2}}+\frac{2 y z}{n_{4}^{2}}+\frac{2 x z}{n_{5}^{2}}+\frac{2 x y}{n_{6}^{2}}=1 \tag{8}
\end{equation*}
$$

Clearly if the indices $1,2,3, \ldots$ are chosen to be coincident with the principal dielectric axes equation 8 must reduce to equation 5 in the absence of the electric field, i.e. that $1 / n_{4,5,6}=0$

This introduces the linear electro-optic tensor $r^{L E O}$

$$
\begin{equation*}
\Delta\left(\frac{1}{n^{2}}\right)=\sum r_{i j k} E_{k}^{0} \tag{9}
\end{equation*}
$$

This is a $3 \times 3 \times 3$ matrix, i.e., it has 27 elements. Of these, physical symmetry reduces the number to 18 independent elements, written as a 3×6 matrix. $\left[r_{i j k}=\partial \eta_{i j} / \partial E_{k}\right.$ where $\eta=\varepsilon_{0} \varepsilon^{-1}$ and the index ellipsoid is given by $\sum \eta_{i j} x_{i} x_{j}=1$ where $i, j=1,2,3$ with principal indices of refraction n_{1}, n_{2}, n_{3} (see footnote 2) and η is symmetric with respect to interchange of indices i, j. Thus, it follows r (and d) are also invariant under i, j interchange. It is therefore conventional to reduce the i, j index to one symbol I with the correspondence as given in the "look up" table 1]

[^1]
$$
n_{1}=n_{n}+\frac{n_{n}{ }^{3}}{\eta} r_{63} E_{z}
$$

Figure 4: Rotation of axes by 45^{0} about the optical axis.

$j \downarrow \mathrm{i} \longrightarrow$	1	2	3
1	1	6	5
2	6	2	4
3	5	4	3

Table 1 Look up table for $i, j \longrightarrow I$
Any particular Pockels crystal will further reduce the number of non-zero elements as follows. As an example, consider the uniaxial crystal ADP (ammonium dihydrogen phosphate) which has tetragonal ($\overline{4} 2 \mathrm{~m}$) symmetry. The index ellipsoid (see figure 3) is represented by

$$
\left[\begin{array}{c}
\Delta\left(\frac{1}{n^{2}}\right)_{1} \tag{10}\\
\Delta\left(\frac{1}{n^{2}}\right)_{2} \\
\Delta\left(\frac{1}{n^{2}}\right)_{3} \\
\Delta\left(\frac{1}{n^{2}}\right)^{4} \\
\Delta\left(\frac{1}{n^{2}}\right)_{5} \\
\Delta\left(\frac{1}{n^{2}}\right)_{6}
\end{array}\right]=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
r_{41} & 0 & 0 \\
0 & r_{52} & 0 \\
0 & 0 & r_{63}
\end{array}\right]\left[\begin{array}{l}
E_{1}^{0} \\
E_{2}^{0} \\
E_{3}^{0}
\end{array}\right]
$$

The crystal is now biaxial.
Or in terms of the polarisation of the medium ${ }^{3}$, which we shall use for optical fields in harmonic generation,

$$
\left[\begin{array}{c}
P_{x} \tag{11}\\
P_{y} \\
P_{z}
\end{array}\right]=\varepsilon_{0}\left[\begin{array}{cccccc}
0 & 0 & 0 & d_{14} & 0 & 0 \\
0 & 0 & 0 & 0 & d_{25} & 0 \\
0 & 0 & 0 & 0 & 0 & d_{36}
\end{array}\right]\left[\begin{array}{c}
E_{x}^{2} \\
E_{y}^{2} \\
E_{z}^{2} \\
2 E_{y} E_{z} \\
2 E_{x} E_{z} \\
2 E_{x} E_{y}
\end{array}\right]
$$

If we take as the direction of the applied d.c. field $E^{0}=E_{z}^{0}=E_{3}^{0}$ then the new index ellipsoid will given by

$$
\begin{equation*}
\frac{x^{2}}{n_{0}^{2}}+\frac{y^{2}}{n_{0}^{2}}+\frac{z^{2}}{n_{e}^{2}}+2 r_{63} x y E_{z}^{0}=1 \tag{12}
\end{equation*}
$$

[^2]

Figure 5: Rotation of Axes

A clockwise rotation take axes $X Y$ onto $x y$:(Equivalently a positive angle to the positive x -axis amounts to an anticlockwise rotation). The relationship between the different co-ordinate systems for a 45^{0} rotation is given by simple trigonometry as follows

$$
\binom{x}{y}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & -1 \tag{13}\\
1 & 1
\end{array}\right)\binom{X}{Y}
$$

or,

$$
\binom{X}{Y}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \tag{14}\\
-1 & 1
\end{array}\right)\binom{x}{y}
$$

In the present case x, y represent the original axes which are transformed to $x^{\prime}, y^{\prime}(\equiv X, Y$ in the figure) by an anticlockwise rotation. Thus inserting.

$$
\begin{equation*}
x=1 / \sqrt{2}\left(x^{\prime}-y^{\prime}\right) \text { and } y=1 / \sqrt{2}\left(x^{\prime}+y^{\prime}\right) \tag{15}
\end{equation*}
$$

into the equation for the ellipsoid 12 we have

$$
\begin{equation*}
\frac{\left(x^{\prime}-y^{\prime}\right)^{2}}{2 n_{o}^{2}}+\frac{\left(x^{\prime}+y^{\prime}\right)^{2}}{2 n_{o}^{2}}+\frac{2\left(x^{\prime}-y^{\prime}\right)\left(x^{\prime}+y^{\prime}\right)}{2} r_{63} E_{z}^{0}+\frac{z^{2}}{n_{e}^{2}}=1 \tag{16}
\end{equation*}
$$

which when rearranged gives

$$
\begin{equation*}
\frac{x^{\prime 2}}{n_{o}^{2}}+\frac{y^{\prime 2}}{n_{o}^{2}}+\left(x^{\prime 2}-y^{\prime 2}\right) r_{63} E_{z}^{0}+\frac{z^{2}}{n_{e}^{2}}=1 \tag{17}
\end{equation*}
$$

leading to

$$
\begin{equation*}
\frac{x^{\prime 2}}{n_{o}^{2}}\left(1+n_{o}^{2} r_{63} E_{z}^{0}\right)+\frac{y^{\prime 2}}{n_{o}^{2}}\left(1-n_{o}^{2} r_{63} E_{z}^{0}\right)+\frac{z^{2}}{n_{e}^{2}}=1 \tag{18}
\end{equation*}
$$

This identifies

$$
\begin{equation*}
\frac{1}{n_{x^{\prime}}^{2}}=\frac{\left(1+n_{o}^{2} r_{63} E_{z}^{0}\right)}{n_{o}^{2}} \tag{19}
\end{equation*}
$$

Or equivalently

$$
\begin{equation*}
n_{x^{\prime}}^{2}=\frac{n_{o}^{2}}{\left(1+n_{o}^{2} r_{63} E_{z}^{0}\right)} \tag{20}
\end{equation*}
$$

Figure 6: Electro-optic modulator used as an intensity modulator.

Thus, given that $r_{63} E_{z}^{0} \ll n_{o}^{-2}$ we have $n_{x^{\prime}}=n_{0}\left(1+n_{0}^{2} r_{63} E_{z}^{0}\right)^{-1 / 2} \sim n_{0}\left(1-\frac{1}{2} n_{0}^{2} r_{63} E_{z}^{0}\right)$ and similarly for $n_{y^{\prime}}$. This gives finally

$$
\begin{equation*}
\Delta n=\left|n_{x^{\prime}}-n_{y^{\prime}}\right|=n_{0}^{3} r_{63} E_{z}^{0} \tag{21}
\end{equation*}
$$

To act as a half-wave plate the phase induced by the field must be π radians, so

$$
\begin{equation*}
\phi=\frac{2 \pi}{\lambda} \Delta n d=\pi \tag{22}
\end{equation*}
$$

and the half-wave voltage is

$$
\begin{equation*}
V_{\pi}=\frac{\lambda}{2 n_{0}^{3} r_{63}} \tag{23}
\end{equation*}
$$

Appendix

Wave-vector surface
Linear but tensorial χ

$$
\left[\begin{array}{l}
P_{x} \tag{24}\\
P_{y} \\
P_{z}
\end{array}\right]=\varepsilon_{0}\left[\begin{array}{lll}
\chi_{11} & \chi_{12} & \chi_{13} \\
\chi_{21} & \chi_{22} & \chi_{23} \\
\chi_{31} & \chi_{32} & \chi_{33}
\end{array}\right]\left[\begin{array}{l}
E_{x} \\
E_{y} \\
E_{z}
\end{array}\right]
$$

The wave equation including polarisation but not conduction currents J is of the form

$$
\begin{equation*}
\boldsymbol{\nabla} \times(\boldsymbol{\nabla} \times \mathbf{E})+\frac{1}{c^{2}} \frac{\partial^{2} \mathbf{E}}{\partial t^{2}}=-\frac{1}{c^{2}} \chi \frac{\partial^{2} \mathbf{E}}{\partial t^{2}} \tag{25}
\end{equation*}
$$

The transparent, insulating crystal can thus sustain a plane monochromatic wave ($E_{0} \exp i\{\mathbf{k} . \mathbf{r}-$ $\omega t\}$) provided the propagation vector satisfies the equation

$$
\begin{equation*}
\mathbf{k} \times(\mathbf{k} \times \mathbf{E})+\frac{\omega^{2}}{c^{2}} \mathbf{E}=-\frac{\omega^{2}}{c^{2}} \chi \mathbf{E} \tag{26}
\end{equation*}
$$

The cartesian components of this equation are thus

$$
\begin{equation*}
\left(-k_{y}^{2}-k_{z}^{2}+\frac{\omega^{2}}{c^{2}}\right) E_{x}+k_{x} k_{y} E_{y}+k_{x} k_{z} E_{z}=-\frac{\omega^{2}}{c^{2}} \chi_{11} E_{x} \tag{27}
\end{equation*}
$$

and similarly for $y-$ and z - components.
To interpret this result let the wave propagate along one of the principal axes of the crystal, say z. In this case $k_{z}=k$ and $k_{x}=k_{y}=0$ and the components become

$$
\begin{align*}
\left(-k^{2}+\frac{\omega^{2}}{c^{2}}\right) E_{x} & =-\frac{\omega^{2}}{c^{2}} \chi_{11} E_{x} \tag{28}\\
\left(-k^{2}+\frac{\omega^{2}}{c^{2}}\right) E_{y} & =-\frac{\omega^{2}}{c^{2}} \chi_{22} E_{y} \tag{29}\\
\frac{\omega^{2}}{c^{2}} E_{z} & =-\frac{\omega^{2}}{c^{2}} \chi_{33} E_{z} \tag{30}
\end{align*}
$$

The last equation suggests $E_{z}=0$ because neither χ or ω is zero. The wave is transverse. On the other hand, the first two equations show

$$
\begin{align*}
& k=\frac{\omega}{c} \sqrt{1+\chi_{11}}=\frac{\omega}{c} \sqrt{K_{11}}=\frac{\omega}{c} n_{1} \tag{31}\\
& k=\frac{\omega}{c} \sqrt{1+\chi_{22}}=\frac{\omega}{c} \sqrt{K_{22}}=\frac{\omega}{c} n_{2} \tag{32}
\end{align*}
$$

where n_{1}, n_{2} and n_{3} are the principal indices of refraction.
Now the equations for the components [27] lead to the following condition for non-trivial solution for the field components not to vanish, i.e.

$$
\left|\begin{array}{ccc}
\left(\frac{n_{1} \omega}{c}\right)^{2}-k_{y}^{2}-k_{z}^{2} & k_{x} k_{y} & k_{x} k_{z} \tag{33}\\
k_{y} k_{x} & \left(\frac{n_{2} \omega}{c}\right)^{2}-k_{x}^{2}-k_{z}^{2} & k_{y} k_{z} \\
k_{z} k_{x} & k_{z} k_{y} & \left(\frac{n_{3} \omega}{c}\right)^{2}-k_{x}^{2}-k_{y}^{2}
\end{array}\right|=0
$$

This equation gives the wave-vector surface for propagation in the crystal. Thus, for example in the $k_{z}=0$ plane the determinant gives a product of two factors either or both of which must reduce to zero. This condition gives

Figure 7: Wave-vector surface for an anisotropic crystal

Figure 8: Walk off. Poynting's vector and k are no longer collinear

$$
\begin{align*}
k_{x}^{2}+k_{y}^{2} & =\left(\frac{n_{3} \omega}{c}\right)^{2} \tag{34}\\
\frac{k_{x}^{2}}{\left(n_{2} \omega / c\right)^{2}}+\frac{k_{y}^{2}}{\left(n_{1} \omega / c\right)^{2}} & =1 \tag{35}
\end{align*}
$$

which can be seen as the equation of a circle and an ellipse respectively. For a uniaxial crystal $n_{1}=n_{2} \neq n_{3}$ while for biaxial crystal all principal indices are different.

Recognising that $\mathbf{k}=\mathbf{v}\left(\omega / v^{2}\right)$ we can derive the corresponding determinant equation and construct the phase-velocity surface. Finally we can consider the ray-velocity defined by considering the propagation of a narrow beam of light in the crystal. The surfaces of constant phase with velocity u given by

$$
\begin{equation*}
u=\frac{v}{\cos \theta} \tag{36}
\end{equation*}
$$

where θ represents the angle between Poynting vector \mathbf{S} (which gives energy flow) and the \mathbf{k}-vector. When we come to discussing harmonic frequency generation in crystals this effect will be referred to as walk off.

References

Lasers and Electro-optics C.C. Davis (CUP) chapters 18, 1920 \& 21
[1] Quantum Electronics A. Yariv (Wiley) chapters 14, \& 16 (3rd edition)
[2] Fundamentals of Photonics B.E.A. Saleh \& M.C. Teich (Wiley) chapters 18, 19 \& 20
[3] Fundamentals of Nonlinear Optics P.E. Powers (CRC Press 2011) chapters $2 \& 3$
[4] Introduction to Nonlinear Optics G. New (Cambridge 2011) chapters $2,3 \& 4$
[5] Optics E. Hecht (Addison-Wesley) chapter 8 (2nd edition)
[6] Introduction to Modern Optics G.R.Fowles chapter 6 (optics of solids)

[^0]: ${ }^{1}$ If a crystal possesses inversion symmetry the application of an electric field E along some direction causes a change $\Delta n=s E$ in the index. If the direction of the field is reversed the change becomes $\Delta n=s[-E]$, but inversion symmetry requires the two directions to be physically equivalent. This requires $s=-s$ which is possible only for $s=0$. Thus, linear, Pockels cystals require NO centre of symmetry. Note also that these crystal are piezo-electric.

[^1]: 2 By Taylor expanding the refractive index about $E=0$ we can write $n(E)=n_{0}+a_{1} E+\frac{1}{2} a_{2} E^{2} \ldots$
 where the coefficients are derivatives of the refractive index with E in the normal way. Defining $r=-2 a_{1} / n^{3}$ and $s=-a_{2} / n^{3}$ we have for $\eta=\varepsilon_{0} / \varepsilon=1 / n^{2}$ the following field dependent change $\Delta \eta=(d \eta / d n) \Delta n=\left(-2 / n^{3}\right)\left(-\frac{1}{2} r n^{3} E-\right.$ $\left.\frac{1}{2} s n^{3} E^{2} ..\right)$.

[^2]: 3 The coefficients d and r are related as follows: $d=\frac{\varepsilon_{0} \chi^{(2)}}{2}$ and $r \sim-\frac{4 d}{\varepsilon_{0} n^{4}}$ Be careful about factors of 2 arising from the use of a complex field. For the Pockels case let the d.c. and optical fields be represented as $E(t)=E^{0}+$ $\operatorname{Re}\{E(\omega) \exp (-i \omega t)\}$.For the case of H.G. let the coupled optical fields be represented as $E(t)=\operatorname{Re}\left\{E\left(\omega_{1}\right) \exp \left(-i \omega_{1} t\right)+\right.$ $\left.E\left(\omega_{2}\right) \exp \left(-i \omega_{2} t\right)\right\}$.

 For S.H.G. in particular let $\omega_{1}=\omega_{2}$

