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Problems (2011/12): Set 1

1. (a) By considering the growth in spectral intensity of a beam of radiation as it propagates through an
inverted medium, or otherwise, show that the optical gain cross-section of a homogeneously broadened
laser transition is given by,1

σ21(ω − ω0) =
~ω
c
B21gH(ω − ω0), (1.1)

where B21 is the Einstein B-coefficient, ω0 the central frequency, and gH(ω−ω0) the lineshape of the
transition.

(b) A laser operates on a homogeneously broadened transition between upper and lower levels of fluo-
rescence lifetimes τ2 and τ1respectively, which are pumped at rates of R2 and R1 respectively. Show
that the gain coefficient of the transition is reduced by the presence of intense, narrow-band radiation
of total intensity I and frequency ωL, according to:

αI(ω − ω0) =
α0(ω − ω0)

1 + I/Is
, (1.2)

where α0(ω − ω0) is the small-signal gain coefficient, and the saturation intensity is given by,

Is =
~ω0

σ21(ωL − ω0)τR.
(1.3)

(c) Show that the recovery time τR, is given by,

τR = τ2 +
g2

g1
τ1 [1−A21τ2] , (1.4)

where g2 and g1 are the degeneracies of the upper and lower levels respectively.

2. (a) Explain what is meant by homogeneous broadening and inhomogeneous broadening of a laser tran-
sition, and give two examples of each type.

(b) Discuss briefly the differences between the behaviour of lasers operating on homogeneously- and
inhomogeneously-broadened transitions as they are brought above threshold.

1For similar problems try the following old Paper B2 Finals questions: Q4 2004, Q4 2002, Q1 2001, Q3 2000 (excluding part on
dye lasers).
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2 PROBLEMS (2011/12): SET 1.

(c) A continuous wave He-Ne gas laser is operated at 632.8 nm in a single transverse mode. The
cavity consists of two mirrors separated by spacer bars of length L. The spacer bars have a linear
expansion coefficient of 1× 10−5 K−1. After the laser is switched on the spacer bars slowly increase
in temperature. For the laser operating at a constant but low discharge current, the laser oscillates
periodically producing a short burst of output every 10 seconds. During each burst, the laser output
at first increases to a peak intensity then decreases to zero and there is no detectable r.f. component
in the output signal.

The discharge current is now increased very slightly so that the output is present continuously
although the intensity fluctuates with a period of 10 seconds. An r.f. component at 300 MHz is
periodically present in the laser output. Account for these observations and calculate the cavity
length and rate of rise in temperature of the spacer bars.

3. This problem deals with a few straightforward properties of Fourier transforms. It is adapted from the
1990 Finals paper.

The Fourier transform Ṽ (ω) of a function V (t) is defined by

V (t) =

∫ ∞
−∞

Ṽ (ω)e−iωt
dω

2π
. (1.5)

(a) Show that Ṽ ∗(ω) = Ṽ (−ω) for the case that V (t) is real.

(b) Prove Parseval’s theorem in the form∫ ∞
−∞
|V (t)|2dt =

∫ ∞
−∞
|Ṽ (ω)|2 dω

2π
. (1.6)

for the case where V (t) is complex.

(c) Real functions f(x), g(x) possess Fourier transforms F (k), G(k). Show that:

i. F ∗(k) is the transform of f(−x)

ii. F (k).G(k) is the transform of the convolution
∫
f(x′)g(x− x′)dx′.

iii. F (k).G∗(k) is the transform of the correlation
∫
f(x′)g(x′ − x)dx′.

iv. f(x− a) is the inverse Fourier transform of F (k)e−ika.

4. Determine the Fourier transform of each of the following functions f(x).

(a) f(x) = 0 for x < −L/2, x > L/2
f(x) = A cos(k0x) for −L/2 ≤ x ≤ L/2

(b) f(x) = 0 for x < −L/2, x > L/2
f(x) = A sin2(k0x) for −L/2 ≤ x ≤ L/2

(c) f(x) =

N−1∑
n=0

g(x− nc)

where g(x) = 1 for − 1
2 (b+ a) < x < − 1

2 (b− a)
g(x) = 1 for 1

2 (b− a) < x < 1
2 (b+ a)

g(x) = 0 otherwise

5. The operation of a CD or DVD player is predicated on the characteristics of a laser beam that is reflected
from the disc, and undergoes diffraction as it propagates towards the detector. This problem asks you
to calculate the form of the diffraction pattern, although in one dimension rather than two. The disc
is constructed so that a circular laser beam of radius r > d is incident on a “pixel” of radius d. The
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diffracted beam under this condition represents, say, a logical “0”. A logical “1” is encoded by a pit of
radius d/2 centred in the pixel. The diffracted beams are collected by a lens and imaged on to a detector.
The aperture of the lens is chosen so that a reasonable contrast is possible between the “0” and “1”. This
problem is adapted from Finals 1991.

(a) Explain the physical basis for expressing the amplitude of a diffracted light wave by an integral of
the Kirchoff form.

(b) A beam of light of wavelength λ = 2π/k is collimated to travel as a plane wave in the z-direction.
It falls on a slit of width 4d lying in the xy plane and at a large distance. Show that the diffracted
amplitude is given by

U04d
sin(2kd sin(θ))

(2kd sin(θ))
. (1.7)

where U0 is a constant and θ is the angle between the direction of observation and the z-axis.

(c) The central 2d of the slit is next covered with a transparent film which has the effect of phase-delaying
the light passing through it by π relative to that passing through the outer portions of the slit. Show
that the amplitude diffracted in this case is

−8U0d
sin(kd sin(θ))

(kd sin(θ))
sin2

(
1

2
kd sin(θ)

)
. (1.8)

(d) Sketch the intensity as a function of θ, for this case and for the case where the slit is unobstructed.

(e) A device for detecting the presence or absence of the film consists of a lens that collects light trans-
mitted by the slit and delivers it to a photodetector of large area. The radius of the lens subtends
an angle α =sin−1(λ/4d) at the slit. Comment on the suitability of the lens for this purpose.

6. (a) Given that for an ideal four-level laser the rate equations for the population inversion density N∗(t)
and the photon density n(t) may be written as:

dN∗

dt
= R2 −N∗σ21

I

~ω
− N∗

τ2
(1.9)

dn

dt
= fcσ21cN∗n− n

τc
, (1.10)

where the symbols are defined in the lecture notes, show that under steady-state conditions the
population inversion and photon densities are given by,

Nth∗ =
1

fcσ21cτc
(1.11)

n0 = (r − 1)
N∗thfcτc
τ2

, (1.12)

where r = R2τ2/N
∗
th is the over-pumping ratio.

(b) By considering small departures, ∆N∗ and ∆n, from these equilibrium values, show that the rate
equations for the population inversion and photon densities may be linearized to:

d∆N∗

dt
= −r∆N∗

τ2
− 1

fc

∆n

τc
(1.13)

d∆n

dt
= (r − 1)fc

∆N∗

τ2
. (1.14)



4 PROBLEMS (2011/12): SET 1.

(c) Hence, by assuming solutions of the form ∆N∗(t) = a exp(mt), ∆n(t) = b exp(mt), show that no
relaxation oscillations will occur if,

τ2 <
r2

r − 1

τc
4
. (1.15)

(d) Consider laser oscillation in a semiconductor diode lasers. In such systems the cavity is formed by the
Fresnel reflections from the cleaved end faces of the semiconductor crystal, and has a length typically
equal to 250 µm. If the fluorescence lifetime of the upper laser level is 1 ns, and the refractive index
of the semiconductor is equal to 3.6, discuss whether it is possible that relaxation oscillations will
occur.

7. (a) What is meant by the term Q-switching?2 Include in your discussion sketches of the gain, loss and
photon flux as functions of time for a Q-switched laser, as well as a description of the elements needed
for such a laser, and a sketch of the cavity layout.

(b) The rate equations for the population inversion density and photon density during the Q-switched
pulse may be written:

dN∗

dt
= −βN∗σ21

I

~ω
(1.16)

dn

dt
=

(
N∗

N∗th
− 1

)
n

τc
. (1.17)

Show that the energy that is extracted in the Q-switched pulse is given by,

E = ηN∗i Vg~ω, (1.18)

where Vg is the volume of the gain region and the energy utilization factor is given by,

η =
N∗i −N∗f
βN∗i

. (1.19)

Interpret this last result for the cases of: (i) an ideal four-level laser; (ii) severe bottle-necking.

(c) Show that the photon density at the peak of the Q-switched pulse is given by,

npeak =
fc

β
N∗th [r − 1− ln r] . (1.20)

(d) Hence derive an approximate expression for the duration of the Q-switched laser pulse, and explain
physically the conditions under which the output pulse duration tends to the cavity decay time.

(e) A laser cavity consists of two mirrors, having reflectivities R1 = 0.98 and R2 = 0.80. The cavity
length is 0.3 m. The saturation fluence of the gain medium, ~ω/2σ21 is 1 J cm−2 and the beam
diameter throughout the gain medium is approximately 1 mm. Assuming that no bottlenecking
occurs, calculate the energy, peak power and pulse duration from this laser when Q-switched with
an initial inversion density 500 times above threshold.

2For similar Finals questions see: Q5 C2 2007 and Q4 C2 2006. Also try the following old Paper B2 Finals questions: Q1 2003,
Q2 2002.



Problems (2011/12): Set 2

1. (a) Discuss briefly what is meant by the term modelocking and explain why it is a useful technique.

(b) Discuss what is meant by active and passive modelocking, and describe briefly an example of each
type.

2. Here we consider a more general case of modelocking in which the frequencies and phases of the longitudinal
modes are given by1

ωn = n∆ω + δω (2.1)

φn = n∆φ+ δφ (2.2)

where n is an integer, and ∆ω the frequency between adjacent modes.

(a) Suppose that the laser oscillates on an odd number of modes labelled n = P0 − P/2 . . . P0 + P/2.
Show that at the point z = 0 the amplitude of the beam emitted from the laser will have the form,

E(0, t) = exp (−i[P0∆ωt+ δωt− P0∆φ− δφ])

×
p=+P/2∑
p=−P/2

ap exp (−ip[∆ωt−∆φ]) . (2.3)

where ap is the amplitude of the mode with n = P0 + p.

(b) Identify the factors corresponding to the carrier wave and pulse envelope in the above result. Show
that the peaks of the envelopes of the pulses occur at times given by,

tq =
2π

∆ω
q +

∆φ

∆ω
q = 0, 1, 2, 3, . . . (2.4)

and hence that the phase difference ∆φ causes the peaks of the pulse envelopes to shift in time by
an amount ∆φ/∆ω compared to the case when ∆φ = 0.

(c) Show that the carrier-envelope offset phase, that is the phase of the carrier wave at the peaks
in the pulse envelope is given by,

φCEO = 2π

[
P0q + q

δω

∆ω
+
δω

∆ω

∆φ

2π
− δφ

2π

]
. (2.5)

(d) Hence show that the phase of the carrier wave at the peak of the pulse envelope will change unless
δω = 0. When might control of φCEO be important?

1For more modelocking questions, try the following old Paper B2 Finals question: Q1 2004.
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6 PROBLEMS (2011/12): SET 2.

(e) We now consider the case of a Gaussian spectrum of longitudinal modes. (For the remainder of the
question assume that ∆φ = δφ = δω = 0.) Suppose that the amplitudes of the oscillating modes are
described by,

ap = exp

[
−
(
p∆ω

∆ω′

)2
]
. (2.6)

Find the full-width at half maximum, ∆ωFWHM, of the power spectrum in terms of ∆ω′ (assume
∆φ = 0).

(f) By approximating the sum in eqn (2.3) to an integral, show that the modelocked pulse has a Gaussian
envelope in time, and find the full-width at half maximum, ∆tFWHM, of the intensity profile. [You
may require the identity

∫∞
−∞ exp(−a2ω2) exp(−iωt)dω =

√
(π/a) exp(−t2/4a2).]

(g) Hence show that the time-bandwidth product of the modelocked pulse obeys,

∆ωFWHM∆tFWHM = 4 ln 2. (2.7)

(h) What bandwidth (in cm−1) would be needed to generate a pulse of 10 attosecond duration, and what
could be the longest mean wavelength of such a pulse? [1 attosecond = 10−18 s]

3. (a) What is meant by the terms group delay dispersion and frequency chirp?

(b) Discuss the importance of dispersion control in the production, amplification, and propagation of
short laser pulses.

(c) We now derive the basic properties of a Gaussian optical pulse described by

Ein(t) = e−Γt2e−iω0t (2.8)

where the complex Gaussian parameter is defined by Γ ≡ a + ib. Show that the full-width at half
maximum duration of the intensity profile of the pulse is given by

τp =

√
2 ln 2

<(Γ)
=

√
2 ln 2

a
.

(d) Given the standard integral,

∫ ∞
−∞

e−βt
2

eiωtdt =

√
π

β
e−ω

2/4β if <(β) > 0, (2.9)

calculate the Fourier transform of eqn (2.8) to show that the amplitude per unit frequency interval
is given by

a(ω′) =

√
1

2Γ
e−ω

′2/4Γ, (2.10)

where ω′ = ω − ω0.
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(e) Show that the full-width at half maximum width of the power spectrum is given by

∆ωp = 2
√

2 ln 2
√
a[1 + (b/a)2],

and hence show that the time-bandwidth product of the Gaussian pulse is equal to

∆ωpτp = 4 ln 2
√

1 + (b/a)2.

4. We now consider the propagation of the Gaussian optical pulse through a dispersive medium in which the
accumulated phase is given by

φ(ω) = φ(0) + φ(1)(ω − ω0) +
1

2
φ(2)(ω − ω0)2.

(a) By considering the propagation of each frequency component, show that the amplitude of the electric
field at the end of the medium is given by,

Eout(t) =

√
1

4πΓin
ei[φ(0)−ω0t]

×
∫ ∞
−∞

exp

[
−
(

1

4Γin
− i

φ(2)

2

)
ω′2
]

× exp
{
−iω′

[
t− φ(1)

]}
dω′.

(b) Using eqn (2.9), or by comparing the above integral to eqn (2.10), show that the amplitude of the
transmitted pulse is given by

Eout(t) =

√
Γout

Γin
exp[i(φ(0) − ω0t)] exp

{
−Γout

[
t− φ(1)

]2}
,

where

1

Γout
=

1

Γin
− 2iφ(2). (2.11)

(c) We now consider the form of the Gaussian pulse as a function of the distance z it propagates through
a quadratically-dispersive medium. Use eqn (2.11) to show that the real and imaginary parts of the
Gaussian parameter Γ(z) = a(z) + ib(x) are given by

a(z) =
a0

[1 + 2b0φ(2)]2 + [2a0φ(2)]2
(2.12)

b(z) =
b0 + 2φ(2)(a2

0 + b20)

[1 + 2b0φ(2)]2 + [2a0φ(2)]2
(2.13)

where a0 and b0 are the real and imaginary parts of Γ at z = 0.
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(d) Show that the duration of the transmitted pulse is given by

τp(z) = τp(0)

√[
1 + 2b0φ(2)

]2
+
[
2a0φ(2)

]2
. (2.14)

(e) Equation (2.14) shows that the duration of the pulse always increases with z if b0φ
(2) ≥ 0. Explain

qualitatively why this occurs.

(f) Sketch the behaviour of τp(z) for the case b0φ
(2) > 0 and b0φ

(2) < 0.

(g) Discuss how the bandwidth of the pulse varies as it propagates through the medium.

5. (a) Show that in propagating through a length L of material with non-linear refractive index n2 an
unchirped, intense pulse will develop a time-dependent angular frequency given by,

ω′(t) = ω0 −
2π

λ0
n2L

∂I

∂t
, (2.15)

where ω0 and λ0 are the central frequency and wavelength of the radiation.

(b) Hence show that a pulse with a Gaussian temporal profile of the form I(t) = I0 exp(−2 ln 2[t/∆t]2),
where ∆t is the full-width at half maximum, develops an additional frequency bandwidth given by,

∆ω = 2B
2

∆t

√
ln 2

e
, (2.16)

where B is the value of the B-integral at the peak of the laser pulse.

(c) A Ti:sapphire laser delivers pulses of duration ∆t = 50 fs with a peak power of 2 TW. Taking the
diameter of the beam to be 10 mm, and assuming a mean wavelength of 800 nm, calculate the B-
integral in:

i. Propagating through a 10 mm thick silica window, and estimate the bandwidth of the transmitted
pulse;

ii. Propagating through 1 m of air.

[For silica n2 = 2.73× 10−20 m2 W−1; for air n2 = 6.3× 10−23 m2 W−1]

(d) Discuss briefly the implication of your results for manipulating TW laser beams.

6. The diffraction from an aperture becomes a Fourier transform of the transfer function of the aperture
under several different circumstances. This problem explores the possible configurations that realise this
situation.

(a) Use the Fresnel approximation to the Kirchoff diffraction integral to calculate the scalar field at a
plane (the image plane) a distance v from a thin lens of focal length f , which is in turn a distance u
from the aperture plane.

(b) The aperture is illuminated with a plane wave of wavelength λ = 2π/k. Show that the diffracted
beam in the image plane is a Fourier Transform of the aperture function under conditions:

i. u = 0, v = f (i.e. the aperture is at the lens)

ii. u = f, v = f (i.e. the aperture is at the back focal plane of the lens)

iii. u = −d, v = f (i.e. the aperture is between the lens and the image plane. In this case the plane
wave is incident on the lens.)
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In each case sketch the setup and determine the scale factors that specify the relationship between
the coordinate in the image plane and the corresponding transverse wavenumber in the aperture
function. In which cases is the Fourier transform relationship exact?

7. Consider a Gaussian beam of wavelength λ propagating along the z-axis, towards positive z, focused by
a thin lens of focal length f located at z = 0. Let us suppose that the Rayleigh ranges (or confocal
parameters) of the beam are b1 and b2 in the regions z < 0 and z > 0 respectively.

(a) Let the beam have a waist at z = −z1. What is the complex radius of curvature q at this point?
Write down the ray transfer matrix for translation through a distance L, and use this to show that
for z < 0 the complex radius of curvature is given by,

q1(z) = z + z1 + ib1. (2.17)

(b) Write down the ray transfer matrix for a thin lens, and use this to find an expression for q2 =
z − z2 + ib2, the complex radius of curvature in the region z > 0.

(c) Show that,

z2 = − z1 (1− z1/f)− b21/f
(1− z1/f)

2
+ (b1/f)

2 (2.18)

b2 =
b1

(1− z1/f)
2

+ (b1/f)
2 . (2.19)

(d) Using the relation between q1(0) and q2(0) found from the ray transfer matrix show that,

1

R1(0)
− 1

R2(0)
=

1

f
(2.20)

w1(0) = w2(0) (2.21)

where R1(0) and R2(0) are the radii of curvature of the wavefronts, and w1(0) and w2(0) the spot
sizes, immediately before and after the lens.

(e) We now consider the limit b1/f � 1.

i. Show that in this case:

1

z1
+

1

z2
=

1

f
(2.22)

w2

w1
=
z2

z1
, (2.23)

where wi =
√
λbi/π is the spot size at the beam waist.

ii. Comment on the results obtained in this limit, and sketch the propagation of the rays through
the system.

(f) We now consider the opposite limit: b1/f � 1.

i. Show that in this case:

z2 = f (2.24)

w2 =
λ

πw1
f. (2.25)
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ii. Show that the size of the beam waist is approximately the same as the spot size predicted by
scalar diffraction theory for a plane wave propagating through a circular aperture of radius w1.

iii. Comment on the results obtained in this limit, and sketch the propagation of the rays through
the system.



Problems (2011/12): Set 3

1. (a) Explain why a double heterojunction structure helps to improve the output characteristics of a
semiconductor laser.

(b) The small-signal gain coefficient α(ω) of a semiconductor device is found to vary with frequency as
follows:

α(ω) = K [fc(E2)− fv(E1)] (~ω − Eg)1/2
, (3.1)

where Eg is the band gap energy. Interpret this equation, explaining in particular the power depen-
dence of the laser frequency and the origin of any temperature dependence.

(c) A GaAs laser has carrier concentrations of 1024 m−3 for both holes and electrons. The effective masses
are mv = 0.1me and mc = 0.07me for carriers in the valence and conduction bands, respectively.
Calculate the maximum value of the gain coefficient at 0 K and the frequency at which it occurs.

[At a temperature of 0 K the band gap energy of GaAs is 1.512 eV and the factor K is 6 ×
105m−1 eV−1/2]

2. Here we evaluate the key parameters involved in determining the Schawlow-Townes linewidth in a He-Ne
laser. Suppose that the laser operates on a single longitudinal mode, that it delivers 1 mW on the 632.8 nm
line, and that the cavity is 30 cm long cavity with R1 = 1, R2 = 0.98.

(a) Find:

i. The cavity lifetime τc.

ii. The cavity linewidth ∆νc.

iii. The Schawlow–Townes linewidth ∆νST.

iv. The coherence time τST against dephasing by spontaneous emission into the oscillating mode.

v. The mean number of photons n̄ in the oscillating mode.

(b) Calculate the change in cavity length which would shift the frequency of the oscillating mode by an
amount equal to ∆νST.

(c) Suppose that the laser cavity is mounted a support made from invar. How stable would the temper-
ature need to be controlled to keep drifts in the laser frequency to within ∆νST? (The coefficient of
thermal expansion of invar is approximately 1× 10−6.)

3. To gain some insight into the operation of waveguides, we first consider the propagation of EM waves in a
simple, 1D waveguide comprised of two infinite, perfectly conducting plates separated by a distance d, as
shown in Fig. 3.1.1 For the moment we will consider the case when the electric field is polarized parallel

1Further discussions of the theoretical treatment of waveguides may be found in Yariv “Optical Electronics in Modern Commu-
nications” p. 491 and Davis, “Lasers and Electro-Optics” p. 395.

11
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Ey

x

y

d

Figure 3.1: A 1D waveguide formed by two infinite, conducting plates.

to the x-axis; the polarization of the magnetic field will remain unspecified, and will need to be found.
We will try and find solutions which are close to, but not quite, the plane wave solutions we are used to
seeing, i.e. we look for solutions of the form:

E(r, t) = Eyj = E0(x)j exp [i(βz − ωt)] (3.2)

H(r, t) = H0(x) exp [i(βz − ωt)] , (3.3)

where ω is the angular frequency of the waves and the propagation constant β is to be found.

(a) Describe the ways in which these trial solutions differ from that of a plane wave.

(b) Given that the plates have infinite extent in the y-direction, show that the Maxwell equation ∇×E =
−∂B/∂t yields:

−βEy = µωHx (3.4)

0 = Hy (3.5)

∂Ey
∂x

= iµωHz (3.6)

(3.7)

(c) Similarly, show that the Maxwell equation ∇×H = ∂D/∂t yields:

∂Hz

∂x
− iβHx = iεωEy. (3.8)

(d) Eliminate Hx to show that Ey satisfies:

d2E0

dx2
= −k2

xE0, (3.9)

where

k2
x = µεω2 − β2. (3.10)
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(e) State the boundary condition which must be satisfied by the electric field at the two plates, and
hence show that,

E0 = A sin
(π
d
px
)

p = 1, 2, 3, . . . , (3.11)

where A is a constant.

(f) Using this result, derive the dispersion relation for the waveguide:

β2 = µεω2 −
(πp
d

)2

, (3.12)

and comment on this result.

(g) Using your solution for E and eqns (3.4) - (3.8) to find the magnetic field H.

(h) Show that in order for the wave to propagate along the waveguide the frequency of the wave must
exceed the cut-off frequency ωc, and find an expression for ωc.

(i) Use the dispersion relation to show that:

vp =
c

n

[
1−

(ωc
ω
p
)2
]−1/2

(3.13)

vpvg =
( c
n

)2

, (3.14)

where the phase and group velocities of the wave are vp = ω/β and vg = ∂ω/∂β respectively, and
c/n is the velocity of EM waves in an unbounded medium made of the same material as that between
the plates. On the same graph, sketch vp and vg as a function of ω/ωc for the mode p = 1.

(j) The set of solutions, labelled by the parameter p, form the a set of waveguide modes. Outline the
ways in which these modes differ from the plane wave solutions found in an unbounded medium.

4. This problem deals with slab waveguides. The treatment is relevant for waves in all sorts of non-isotropic
media, and the elements needed for determining the conditions for guiding are of particular importance.
Consider a 2-dimensional structure consisting of three layers of dielectric. In the vertical (x) direction,
transverse to the direction of wave propagation (z), there is a substrate (refractive index ns), extending
from x = −∞ to x = 0, an intermediate layer, (nf , between x = 0 and x = h) and a cover, (nc, between
x = h and x = +∞). The task is to find the existence condition for guided waves by deriving a dispersion
relation between the frequency and wavevector, and to determine the number of waves that can propagate
in the structure.

As in the previous question we postulate a transverse electric (TE) form for the wave fields, with linear
polarization in the y direction. Specifically:

E(x, y, z) = ŷ C e(iβz−iωt) e−γc(x−h) for x > h,

E(x, y, z) = ŷ [Aeiκfx +Be−iκfx] e(iβz−iωt) for 0 ≤ x ≤ h,
E(x, y, z) = ŷ S e(iβz−iωt)e+γsx for x < 0. (3.15)



14 PROBLEMS (2011/12): SET 3.

(a) Comment on the form of these trial solutions. What are the boundary conditions that must be
satisfied by the transverse components of E and H? Use these to find relationships between the field
amplitudes S, C, A, and B; eliminate these amplitudes to find the following dispersion relation:

κfh− arctan

(
γc
κf

)
− arctan

(
γs
κf

)
= mπ. (3.16)

(b) Show that the field in the waveguide center layer is

E(x, y, z) = ŷ Ef cos(κfx− φs) e(iβz−iωt), (3.17)

where φs = arctan( γsκf
), and Ef = 2A eiφs .

(c) Determine the field amplitudes C and S in terms of Ef and other parameters.

(d) The guide only supports certain modes, since the cut-off condition, γs = 0 sets a bound on which
waves are actually guided in the structure. Show that this implies, for a symmetric guide, when
m = 0, that

2πh

λ0

√
n2
f − n2

s = arctan
√
a, (3.18)

where a is the asymmetry parameter for the guide

a =
n2
s − n2

c

n2
f − n2

s

. (3.19)

[Hint: you may need to use the relations between γs, γc, κf and β derived from the fact that the
fields must satisfy the wave equation.]

(e) Show that this implies that a symmetric guide (a = 0) will support a mode of any wavelength no
matter what thickness.

(f) Show further that the minimum guide thickness that will support a mode with index m is

h =
λ0

2π
√
n2
f − n2

s

(arctan
√
a+mπ). (3.20)

Prove that the second term in parentheses is usually significantly larger than the first (use realistic
numbers for the refractive indeces of glass), and therefore that the number of modes supported by a
structure of given thickness is

m =
2h
√
n2
f − n2

s

λ0
(3.21)

(g) Determine the minimum and maximum thickness layers that will support a single mode for a guide
consisting of a substrate layer of quartz (ns = 1.47), a guide layer of glass (nf = 1.62) with air as
a cover layer. For a layer thickness halfway between the extremal values, calculate the propagation
constant β of the guided wave. How does this compare with the magnitude of the wavevector of a
wave of the same frequency in bulk glass of the same refractive index as the guide layer?

5. (a) Explain briefly why crystalline materials are necessary for the observation of the Linear Electro-optic
Effect.2

2For a similar problem see the following old Paper B2 Finals question: Q9 2001.
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(b) The LEO tensor for potassium di-deuterium phosphate (KD∗P) is

rLEO =


0 0 0
0 0 0
0 0 0
r41 0 0
0 r52 0
0 0 r63


A laser beam is incident normally on one face of a KD*P crystal. The beam propagates along the
z-axis of the crystal and is plane-polarised at 450 to the x- and y- crystal axes. Find an expression
for the change in refractive index seen by the laser beam when an electric field Ez is applied along
the z-axis.

(c) When the exit face of the crystal is cut at an angle of 360 to the incident face and the field Ez is
106 Vm−1 the emerging beam is deflected by an additional angle of 0.173 minutes. How may this
be explained? Use the information to calculate the value of r63 for KD∗P. What are the limitations
of this device as a beam deflector? How may a more practical device be constructed using the LEO
effect? The refractive index for the ordinary ray n0 = 1.51.

6. (a) Some substances have a non-linear relationship between electric polarization and electric field within
the material. Explain how this property can be used for generating new optical frequencies.3

(b) A light beam of high power and wavelength 694 nm is passed through a slab of crystalline KH2PO4

(KDP) at right angles to the optic axis. A wave is generated at the second harmonic of the input
frequency. The input wave is polarized with its electric vector at right angles to the optic axis and
the second harmonic wave has its electric vector along the optic axis. It is found that the intensity of
the second harmonic wave does not always increase with an increase of thickness of the crystal. Give
an explanation of this effect and find an estimate of the crystal thickness below which the intensity
is an increasing function of thickness.

(c) Comment on the order of magnitude of your calculated thickness. What is the consequence for the
second harmonic output when a much thicker crystal is used? Describe an arrangement by which a
thick KDP crystal can be used to give efficient generation of the second harmonic.

[The following refractive indices apply to ordinary (o) and extraordinary (e) waves in KDP: n0

(694nm) = 1.506, n0 (347nm) = 1.534, ne (694nm) = 1.466, ne (347nm) = 1.487.]

7. (a) What is the Pockels effect and how may it be used to modulate the amplitude of a light beam?

(b) When an electric field is applied in the y-direction (the optical axis is in the z-direction) of a lithium
niobate crystal, the refractive indices for light whose electric vector is in the x- and y-direction are
given respectively by

nx = no + αE

ny = no − αE

where no is the zero-field refractive index and α has the value 1.6 x 10−11 m V−1 at 633 nm. In the
arrangement you chose what is the magnitude of the voltage that must be available if the modulator
is to achieve 100% modulation (i.e. to change its transmission from 100% to zero) using light from
a He-Ne laser? The crystal has dimensions along the x-, y- and z-directions of 8, 8 and 24 mm
respectively.

3For a similar problem see the following old Paper B2 Finals question: Q8 2003
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(c) Light leaving the lithium niobate crystal is made to pass through a quarter-wave plate whose fast
and slow axes are parallel to the x- and y-axes of the lithium niobate. Describe how this affects the
operation of the modulator you have designed.


