
Worked answers to C2 2011 paper

This is a sample set of worked answers to the 2011 paper which would have achieved full
marks on all questions. In a few cases we comment briefly on alternative methods of solution
which would also have achieved full marks; it would not, of course, be necessary to use more
than one approach in real life. Note that it is entirely possible to get full marks for very brief
answers if these include all key points.

Question 1: Mode locking

Mode locking [7 marks]

In a mode locked laser several cavity modes are forced to oscillate simultaneously with a constant
(possibly zero) phase difference between them. This causes the laser output to comprise a train
of short pulses separated by the round-trip time Tc. The duration of each pulse is related to the
bandwidth of the oscillating modes; the greater the bandwidth the shorter the pulse can be.

Mode locking can be achieved by modulating the losses of the cavity with a frequency ∆ω
equal to the frequency spacing of the cavity modes. This can be realized by placing a Pockels
cell near one end of the laser cavity as below

With a voltage applied to the Pockels cell it acts as a quarter-wave plate and hence the combi-
nation of linear polarizer and Pockels cell rejects the oscillating modes. However if this voltage
is removed the Pockels cell does not change the polarization state of the mode and hence the
cavity losses are reduced. [Other possible approaches include acousto-optic modulation, Kerr
lens mode locking, the use of a saturable absorber, frequency modulation with a Pockels cell or
an AOM.]

Electric field [8 marks]

We can represent the (infinitely long) train of pulses separated by Tc as a Fourier series of
harmonics of the fundamental frequency ∆ω = 2π/Tc. Hence the field has the given form.

At z = 0 we have

E(0, t) =
∑

p

ape
−i[(ωce+p∆ω)t−φ0−p∆φ]

= e−iωceteiφ0

∑

p

ape
−ip(∆ωt−∆φ)
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Let
t′ = t−∆φ/∆ω ⇒ ∆ωt−∆φ = ∆ωt′

so
E(0, t) = e−iωce(t′+∆φ/∆ω)eiφ0

∑

p

ape
−ip∆ωt′ .

Now let p = p0 + q so

E(0, t) = ei(φ0−ωce∆φ/∆ω)e−iωcet′
∑

q

ap0+qe
−i(p0+q)∆ωt′

= ei(φ0−(∆φ/2π)ωceTc)e−i(ωce+p0∆ω)t′ ×
∑

q

ap0+qe
−iq∆ωt′

where the two terms before the × sign define the carrier wave, and the third term written as
∑

q

ap0+qe
−i2πqt′/Tc

defines the envelope.
Each pulse has the form

Phase slip [4 marks]

Suppose the envelope has a peak at t′. The next peak will occur at t′ + Tc, when the field will
be

E(0, t′ + Tc) = ei(φ0−(∆φ/2π)ωceTc)e−i(ωce+p0∆ω)(t′+Tc) ×
∑

q

ap0+qe
−i2πq(t′+Tc)/Tc .

Now
∑

q

ap0+qe
−i2πq(t′+Tc)/Tc =

∑

q

ap0+qe
−i2πqt′/Tc

and so the envelope is unchanged. However the phase of the carrier-wave changes by

|φslip| = (ωce + p0∆ω)Tc = ωceTc + 2πp0

Neglecting multiples of 2π
|φslip| = ωceTc = 2πωce/∆ω.
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Holding φCEO constant [6 marks]

The value of φCEO is important if there are only a small number of optical cycles within the
pulse envelope (a “few cycle” pulse).

The second harmonic component of p = n has a frequency ω1 = 2(ωce + n∆ω). The compo-
nent p = 2n has a frequency ω2 = ωce + 2n∆ω. The difference between these two frequencies
is

δ = ω1 − ω2 = 2ωce + 2n∆ω − (ωce + 2n∆ω) = ωce.

To keep φCEO fixed we need φslip = 0, and hence ωce = 0. Hence by setting the difference
frequency to zero we hold the phase offset φCEO constant.

Question 2: The alexandrite laser

Introduction [9 marks]

Optical pumping on the vibronic transition 4T ← 4A (ground state) populates the vibrational
levels of 4T2 and 2E. Rapid vibrational relaxation leads to a build up of population in the
lowest vibrational levels of 4T2 and 2E. The population of these levels in maintained in thermal
equilibrium by phonon collisions.

Transition α occurs on a zero-phonon transition since there is no change of configuration
coordinates. The lower level is the ground state and so the laser operates on a three-level
scheme. Since lasing occurs to the ground state the thermal population of the lower laser level
is high, and hence it is not usually possible to achieve continuous wave oscillation. Being a
zero-phonon transition the laser line has a narrow spectral width.

Transition β occurs on a vibronic transition since there is a change of configuration coordi-
nate. In this case lasing can occur to many vibrational levels of 4A2 and the laser output can be
tuned over a wide frequency range. The lower laser level is an excited vibrational level of 4A2

which decays rapidly by non-radiative phonon processes. As such the laser can be considered as
a four-level scheme, and it is possible to achieve continuous oscillation.

Populations [4 marks]

The populations in levels 3 and 4 are related by

N4/N3 = e−∆E/kT

so with a population of N3 in level 3 there must also be a population N4 = N3e
−∆E/kT in level

4. Hence the absorbed pump energy is

W = (N3 +N4)Vg(hc/λp) = Vg(hc/λp)N3

(

1 + e−∆E/kT
)

which can be rewritten as

W = Vg(hc/λp)N4e
∆E/kT

(

1 + e−∆E/kT
)

= Vg(hc/λp)N4

(

1 + e∆E/kT
)

.

Pump energy [7 marks]

For transition α we have N∗ = N3−N1. Assuming all ions are in levels 1, 3 and 4 (since the other
levels populated by optical pumping decay rapidly to the upper laser levels and we can neglect
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emission from level 4 as there is no feedback on the transition) we can write NT = N1+N3+N4.
Thus

N∗ = N3 −N1

= N3 − (NT −N3 −N4)

= 2N3 +N4 −NT

=
(

2 + e−∆E/kT
)

N3 −NT

which rearranges to

N3 =
N∗ +NT

2 + e−∆E/kT
.

Laser oscillation requires that N∗ reaches a threshold value set by the cavity losses. This will
be small compared with NT and hence

N3 ≈
NT

2 + e−∆E/kT
.

Putting everything together gives

Wth = Vg
hc

λp
NT

(

1 + e−∆E/kT

2 + e−∆E/kT

)

.

In the limit T → 0 the exponentials tend to 0 and so

Wth → Vg
hc

λp

NT

2

which is analogous to the ruby laser, for which the lasing threshold corresponds to promoting
half the ions to the upper level. In the limit T →∞ the exponentials tend to 1 and

Wth → Vg
hc

λp

2NT

3

so clearly the threshold energy increases with temperature.

Minimum power [5 marks]

For transition β we have N∗ = N4 −N2 ≈ N4 as the lower level will be almost empty. For this
four level laser the critical value of N4 is set by the threshold condition

R1R2e
2N∗σ21lg = 1 ⇒ 2N∗σ21lg = − ln(R1R2)

and so

N∗ =
− ln(R1R2)

2σ21lg
≈ N4.

Hence

Wth = Vg
hc

λp
(N3 +N4) =

− ln(R1R2)

2σ21lg
Vg
hc

λp

(

1 + e∆E/kT
)

and using Vg = πa2lg gives the final result

Wth =
−πa2
2σ21

ln(R1R2)
hc

λp

(

1 + e∆E/kT
)

Finally inserting the given values (λp = 500 nm, R1 = 1, R2 = 0.9, a = 5mm, σ21 = 7 ×
10−19 cm2, T = 333K and ∆E = 800 cm−1) leads to Wth = 0.768 J. The pump power is given
by Pth =Wth/τ2, and as τ2 = 260µs we get Pth = 2.95 kW.
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Question 3: Interferometry

Introduction [6 marks]

The small tilt adds an additional optical path to each arm:

δ = L/ cosψ − L
≈ L[(1− ψ2/2)−1 − 1]

≈ L[(1 + ψ2/2)− 1]

= Lψ2/2.

The clockwise path travels along 3 tilted sides, while the anti-clockwise path only travels along
1 tilted side. Therefore the total extra path length is 2δ, and the phase accumulated is 2φ =
(2π/λ)Lψ2.

Translating the mirror has no effect because the interferometer is a common path (or Sagnac)
interferometer. The path length difference between clockwise and anti-clockwise paths is unaf-
fected by translation since the path lengths for both paths change by the same amount.

Varying θ [9 marks]

The beamsplitter divides the input field into two modes, one propagating clockwise (c) and one
anti-clockwise (a). Writing the amplitudes for these two modes as the components of a column
vector, the field after the beamsplitter is

(

Ein/
√
2

iEin/
√
2

)

.

after reflection from M , each mode receives an equal and opposite transverse momentum kick
kx, where sin θ = kx/k with k = 2π/λ. In addition, the c mode accumulates the phase 2φ with
respect to the a mode. After one round trip of the interferometer we therefore have

(

ei(φ+kxx)Ein/
√
2

ie−i(φ+kxx)Ein/
√
2

)

.

Finally, the fields are recombined at the beamsplitter. The output port O is the ‘dark port’ of
the interferometer. The output field is therefore given by

Eout = −iei(φ+kxx)Ein/2 + ie−i(φ+kxx)Ein/2.

And some trivial algebra yields the result

Eout(x) = sin(φ+ kxx)Ein(x),

as required. Since kxx, φ are small we have sin(φ+ kxx) ≈ φ+ kxx.

5



Gaussian beam [5 marks]

The input field Gaussian profile can be expanded as e−(x/σ)2 ≈ 1 − x2/σ2. Multiplying these
two together yields

Eout(x) ≈ (φ+ kxx)E0(1− x2/σ2)
= φE0(1− x2/σ2 + kxx/φ− kxx2/σ2 + . . .)

≈ φE0

[

1−
(

x− kxσ2/2φ
σ

)2

+ . . .

]

≈ φE0e
−[(x−〈x〉)/σ]2 , (1)

where E0 denotes the amplitude of the input field.

Small rotations [5 marks]

The displacement 〈x〉 depends inversely on φ. By choosing φ to be sufficiently small, any
tiny rotation θ can be ‘amplified’ to give a measurable displacement. Very little light emerges
from the output O. As just shown, the total intensity is proportional to φ2|E0|2. Therefore to
maintain a measurable signal as φ is reduced, more and more laser power is required. Eventually
the cost of a high power laser becomes prohibitive and the damage thresholds of the various
components may be reached.

Question 4: Non-linear optics

Examiner’s note: this question is slightly ambiguous about conventions for describing rotations,
and any consistent choice is therefore acceptable. Note also that the assignment of marks on the
examination paper is not quite correct, as the second last paragraph should be included in the
[10] mark prism section.

Introduction [3 marks]

For a transparent crystal to display the Pockels effect it has to have a non-zero χ(2); this in turn
requires the crystal to be non-centrosymmetric.

If a crystal possesses inversion symmetry the application of an electric field E along some
direction must cause a change in the refractive index ∆n = sE. If the direction of the field is
reversed the change becomes ∆n = s(−E), but inversion symmetry requires the two directions
to be physically equivalent, and so s = −s which requires s = 0. Thus linear Pockels crystals
cannot have a centre of symmetry.

Indicatrix [8 marks]

A field applied in the z-direction induces a change in the refractive index in the xy-plane so that
the index ellipsoid becomes

x2

n2o
+
y2

n2o
+
z2

n2e
+ 2r63xyE

0
z = 1

A rotation of the x- and y-axes about the z-axis then transforms the ellipsoid equation into

(

1

n2o
− r63E0

z

)

x′2 +

(

1

n2o
+ r63E

0
z

)

y′2 +
z2

n2e
+ 2r63xyE

0
z = 1
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identifying
1

n2x′

=
1− n2or63E0

z

n2o

and so
nx′ = no

(

1− n2or63E0
z

)−1/2 ≈ no − 1
2n

2
or63E

0
z

where the approximation applies when n2or63E
0
z ≪ 1. There is a similar result for ny′ and we

have for the difference in refractive indices along these rotated axes

∆n = |nx′ − ny′ | = n2or63E
0
z .

Of the linearly polarised laser beam has the plane of polarisation inclined at 45◦ to the x′-
and y′-axes and the electric field along the z-direction has the right magnitude such that it
produces a π phase shift then the plane of polarisation will be rotated by 90◦. The rotation
angle

φ =
2π

λ0
∆nd = π ⇒ ∆n =

λ0
2d

= n2or63E
0
z

occurs for a voltage V0 given by

V0 = dE0
z =

λ0
2n3or63

.

Prism [10 marks]

The angle of deflection produced by a prism with a small apex angle α is given by θ ≈ (n− 1)α.
If the light is linearly polarised along one of the rotated axes (say, x′) and propagating along
the other (y′) then the electric field will cause a change in the deflection angle of

∆θ = α∆n =

∣

∣

∣

∣

1

2
αr63n

3
oE

0
z

∣

∣

∣

∣

=

∣

∣

∣

∣

1

2
αr63n

3
oE

0
z

V0
d

∣

∣

∣

∣

.

The second prism, which is identical to the first can be inverted with the two hypotenuses in
near contact as shown below (sketch would be fine!)

An electric field reversed with respect to the first then doubles the electro-optic deflection while
canceling the static crystallographic deflection.

A change in polarisation axis so that it is parallel with the z-axis leads to no electro-optic
effect and the static refractive index is now the extraordinary index.
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Practicalities [4 marks]

The degree to which the deflection can be detected depends on the diffraction of the beam; of
the beam fills the input face of the double prism then

δθ ≈ λ0
D

with D ≈ d. Thus while making the aperture greater helps to reduce the diffraction spread,
making deflection measurements easier, it also necessitates the application of higher voltages to
produce the same electro-optic deflection.
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