
5. The Deutsch–Jozsa algorithm permits the efficient identification of classical bi-
nary functions from n bits to 1 bit which are either constant or balanced, and can be
implemented in the case n = 2 using the network below
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where the last qubit is an ancilla, and the networks below act as oracle implementations
of two of the six balanced functions.

f0011 =

s

i

f0101 = s

i

Draw labelled networks for oracle implementations of the four remaining balanced func-
tions, the two constant functions, and the unbalanced function f0001. [7]

Find the final state of the three qubits for the two constant functions and the six
balanced functions using either matrix methods (you may find it useful to factor out the
ancilla qubit and any global phases) or circuit identities, and determine the probability
of finding both input qubits in the final state |0〉 in each case. Repeat this calculation
for the function f0001 and discuss whether the Deutsch–Jozsa algorithm can be useful
with unbalanced functions. [13]

Describe briefly how to implement Hadamard and cnot gates in a trapped ion
quantum computer. [5]
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6. Write down the matrix form of the quantum gate φz and find the effect of applying
this to a general state |ψ〉 = α|0〉 + β|1〉. Use explicit matrix methods to show that
X=HZH, and hence or otherwise find the effect of applying φx to |ψ〉. [5]

Consider an ensemble of qubits which start in the state |ψ〉 and then experience
either a φz gate, an identity gate, or a φ

−z gate, chosen independently at random for
each qubit in the ensemble. Show that the final state is identical to that of an ensemble
of qubits which either experience a Z gate with some probability p, or are left untouched
with probability 1− p, and find the relationship between p and φ. [5]

Consider the special case where |ψ〉 lies on the equator of the Bloch sphere. Cal-
culate the purity of the final state, and find the value of φ which reduces the purity of
the state to the minimum possible value. Use the Bloch sphere picture to explain why
this occurs. [6]

Describe an error-correction network which can correct spin-flip errors using three
physical qubits to encode one logical qubit. Explain why this network will also correct
random φx gates, and discuss how the effectiveness varies with φ. How could this
network be modified to correct random φz gates instead? [9]

[The purity of a density matrix ρ is defined as tr(ρ2).]

7. Not all internal states of an atom are suitable for representing basis states of a
qubit. State two properties of states that make a ‘good’ qubit. Two hyperfine states
of an atom |g〉 and |e〉 with energy difference h̄ω are used to represent a qubit. Briefly
explain how coherent Rabi-oscillations can be driven between these two states. What
is the effect of a resonant π/2 pulse with phase zero on the states |g〉 and |e〉? [5]

An atom is initially, at time t = 0, prepared in the state |e〉〈e|, and then decays
to the state |g〉〈g| at a rate γ. Calculate the density matrix of the atom and its entropy
as a function of time and give a physical reason why this evolution cannot be unitary.
What is the time evolution if the atom starts in |g〉〈g|? The time evolution of the initial
operator |e〉〈g| is given by

|e〉〈g| → e−iωt−γt/2|e〉〈g| .
What is the evolution of the operator |g〉〈e|?

Describe the trajectory followed by the initial density matrix |e〉〈e| on the Bloch
sphere where the north pole corresponds to |g〉〈g| and the south pole to |e〉〈e| qualita-
tively as a function of t. Compare this to the trajectory of the state of an atom driven
by a π pulse from |e〉〈e| to |g〉〈g|. How does the entropy change along these trajectories? [10]

The atom now starts in |g〉〈g| and an instantaneous π/2 pulse is applied at time
t = 0. It is then allowed to evolve for a time τ before a second instantaneous π/2 pulse
is applied. The atom is measured immediately afterwards. Calculate the probability of
finding the atom in state |e〉 in this measurement as a function of τ for a given ω and the
cases where γ = 0 and where γ 6= 0. Briefly discuss the implications of this result for
using atomic states |g〉 and |e〉 as a qubit or as the two paths of an atom interferometer.

[10]
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8. The computational basis states of a qubit are encoded as as horizontal |H〉 and
vertical |V 〉 polarizations of a photon. Which polarizations do the X and the Y basis
states correspond to in this encoding? Draw schematic experimental setups using po-
larizing beam splitters (PBS), photo-detectors and wave-plates for measuring the qubit
in each of the three bases. [5]

A two photon source produces polarization entangled photons in the state |α〉 =√
α|V V 〉+

√
1− α|HH〉 with 0 ≤ α ≤ 1. Calculate the joint entropy, the entropy of the

reduced density matrix of each photon, and the mutual information between the photons
as a function of α. Discuss the significance of the mutual information for measurements
in the cases where |α〉 is a product state and where it is a maximally entangled state. [8]

Alice and Bob receive one photon of |α〉, respectively. Bob sends his photon
through the device shown in the figure where the PBSs transmit photons in |V 〉 and
reflect those in state |H〉; the beam splitter (BS) has reflectivity R for both polarizations.
Alice and Bob only keep those photon pairs where the detector D does not click. Work
out the state of these remaining photons. How must R be chosen so that these photon
pairs are maximally entangled? For which values of α is such a choice of R physically
possible? If the photon source produces N pairs per second how many maximally
entangled photon pairs do Alice and Bob obtain per second? [12]
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