5. A pair of beam splitters can be used to build a Mach-Zehnder interferometer as shown in the diagram below, where the phase shifter applies $\mathrm{e}^{\mathrm{i} \phi}$ to photons in the lower arm $|1\rangle$ and the mirrors needed to divert the light beams have not been indicated.

Assuming that the two beam splitters can be treated as Hadamard gates and that a single photon is incident on the interferometer from the $|0\rangle$ arm on the left, calculate the probability of detecting this photon at the $|0\rangle$ and $|1\rangle$ outputs of the interferometer as a function of ϕ.

The behaviour of real beam splitters can be more complex. One family of beam splitters can be described by the unitary transformation

$$
U_{\mathrm{BS}}=\left(\begin{array}{cc}
\mathrm{e}^{-\mathrm{i} \alpha} \cos (\beta / 2) & -\mathrm{i} \sin (\beta / 2) \\
-\mathrm{i} \sin (\beta / 2) & \mathrm{e}^{\mathrm{i} \alpha} \cos (\beta / 2)
\end{array}\right) .
$$

Show that the Hadamard gate is equivalent (up to a global phase) to a special case of U_{BS} by determining appropriate values of α and β, and that the general U_{BS} can be constructed from two Hadamard gates and z-rotations using the sequence

$$
\alpha_{z} H \beta_{z} H \alpha_{z},
$$

where $\alpha_{z}=\mathrm{e}^{-\mathrm{i} \alpha \sigma_{z} / 2}$ and similarly for β_{z}.
Suppose that an interferometer is constructed as above using two identical beam splitters of this kind with $\alpha=0$. Calculate the probability of detecting a photon at the upper output, and show that interference fringes can still be detected. Find the values of β that give the maximum contrast to these fringes.

An interferometer can also be used to perform an interaction-free measurement in an inefficient version of the Elitzur-Vaidman bomb testing problem. Suppose the phase shifter is replaced by a box that contains either (i) an active bomb, triggered by a perfect single-photon detector, thus implementing a projective measurement, or (ii) a passive bomb, without a detector attached. Assuming that the beam splitters can be described by Hadamard gates, describe an outcome of this experiment that allows one to deduce that a bomb is active without setting it off, and calculate the probability that this approach will be successful.

