
Wave Optics

• In part 1 we saw how waves can appear to 
move in straight lines and so can explain 
the world of geometrical optics

• In part 2 we explore phenomena where 
the wave nature is obvious not hidden

• Key words are interference and diffraction

Wave motion (1)

• See the waves lecture course for details!

• Basic form of a one-dimensional wave is 
cos(kx−ωt−φ) where k=2π/λ is the wave 

number, ω=2πν is the angular frequency, 
and φ is the phase

• Various other conventions in use



Cylindrical wave

A plane wave impinging on a 

infinitesimal slit in a plate.

Acts as a point source and 

produces a cylindrical wave

which spreads out in all 

directions.

Finite sized slits will be treated 

later.

Remainder of this course will use slits unless specifically stated

Two slits

A plane wave impinging on a 

pair of slits in a plate will 

produce two circular waves

Where these overlap the 

waves will interfere with one 

another, either reinforcing or 

cancelling one another

Intensity observed goes as 

square of the total amplitude



Interference

Constructive: 

intensity=4

+

=

Destructive: 

intensity=0

+

=

Two slit interference



Two slit interference

Peaks in light 

intensity in 

certain directions 

(reinforcement)

Minima in light 

intensity in other 

directions 

(cancellation)

Can we calculate these directions directly 

without all this tedious drawing?

Two slit interference (2)

• These lines are the sets of positions at 
which the waves from the two slits are in 
phase with one another

• This means that the optical path lengths
from the two slits to points on the line must 
differ by an integer number of wavelengths

• The amplitude at a given point will oscillate 
with time (not interesting so ignore it!)



Two slit interference (3)

Central line is locus of points at same 

distance from the two slits

Two path lengths 

are the same

Two slit interference (4)

Next line is locus of points where distance 

from the two slits differs by one wavelength

Path lengths 

related by 

xleft=xright+λ

xleft xright



Two slit interference (5)

Next line is locus of points where distance 

from the two slits differs by one wavelength

Path lengths 

related by 

xleft=xright+λ

xleft xright

d

Two slit interference (6)

d

D

Interference pattern observed on a distant screen

y
θ

As y<<D the three blue lines are effectively parallel 

and all make an angle θ≈y/D to the normal.  The 

bottom line is slightly longer than the top.



Two slit interference (7)

d
θ

Close up

Green line is normal to the blue lines, and forms 

a right angled triangle with smallest angle θ.  Its 

shortest side is the extra path length, and is of 
size d×sin(θ)≈dy/D

Two slit interference (8)

View at the screen

Bright fringes seen when the extra path length is 

an integer number of wavelengths, so y=nλD/d

Dark fringes seen when y=(n+½)λD/d

λD/d

Central fringe midway between slits

Taking λ=500nm, d=1mm, D=1m, gives a fringe 

separation of 0.5mm



Practicalities: colours (1)

• The above all assumes a monochromatic
light source

• Light of different colours does not interfere 
and so each colour creates its own fringes

• Fringe separation is proportional to 
wavelength and so red fringes are bigger 
than blue fringes

• Central fringe coincides in all cases

Practicalities: colours (2)

Observe bright central fringe (white with coloured 

edges) surrounded by a complex pattern of colours.  

Makes central fringe easy to identify!



Interference (1)

• It is easy to calculate the positions of 
maxima and minima, but what happens 
between them?

• Explicitly sum the amplitudes of the waves 
A=cos(kx1−ωt−φ)+cos(kx2−ωt−φ)

• Write x1=x−δ/2, x2=x+δ/2 and use 
cos(P+Q)+cos(P-Q)=2cos(P)cos(Q)

• Simplifies to A=2cos(kx−ωt−φ)×cos(kδ/2)

Interference (2)

• Amplitude is A=2cos(kx−ωt−φ)×cos(kδ/2)

• Intensity goes as square of amplitude so 
I=4cos2(kx−ωt−φ)×cos2(kδ/2)

• First term is a rapid oscillation at the 
frequency of the light; all the interest is in 
the second term

• I=cos2(kδ/2)=[1+cos(kδ)]/2



Interference (3)

• Intensity is I=cos2(kδ/2)=[1+cos(kδ)]/2

• Intensity oscillates with maxima at kδ=2nπ
and minima at kδ=(2n+1)π

• Path length difference is δ=dy/D

• Maxima at y=Dδ/d with δ=2nπ/k and k=2π/λ
giving y=nλD/d

Exponential waves (1)

• Whenever you see a cosine you should 
consider converting it to an exponential! 
exp(ix)=cos(x)+ i sin(x)

• Basic wave in exponential form is   

cos(kx−ωt−φ)=Re{exp[i(kx−ωt−φ)]}

• Do the calculations in exponential form 
and convert back to trig functions at the 
very end



Exponential waves (2)

• Repeat the interference calculation

• Explicitly sum the amplitudes of the waves
A=Re{exp[i(kx−kδ/2−ωt−φ)]+exp[i(kx+kδ/2−ωt−φ)]} 
=Re{exp[i(kx−ωt−φ)]×(exp[−ikδ/2]+exp[+ikδ/2])} 

=Re{exp[i(kx−ωt−φ)]×2cos[kδ/2]}                            

=2cos(kx−ωt−φ)×cos[kδ/2]} 

• Same result as before (of course!) but can be a 

bit simpler to calculate

• Will use complex waves where convenient from 

now on

Exponential waves (4)

• Use a complex amplitude to represent the wave

A=exp[i(kx−ωt−φ+kδ/2)]×2cos[kδ/2]

• The intensity of the light is then given by the 

square modulus of the amplitude:              
I=A*A=4cos2[kδ/2]

• This approach loses the rapid time oscillations, 

but we have previously ignored these anyway!  

Result is the peak intensity which is twice the 

average intensity.



Diffraction gratings (1)

• A diffraction grating is an extension of a double 

slit experiment to a very large number of slits

• Gratings can work in transmission or reflection 

but we will only consider transmission gratings

• The basic properties are easily understood from 

simple sketches, and most of the advanced 
properties are (in principle!) off-syllabus

Diffraction gratings (7)

Points on a wavefront must be in phase, so the extra 

distances travelled must be multiples of a wavelength

λ2λ
3λ

4λ
5λ

6λ



Diffraction gratings (8)

From trigonometry we see that sin(θ)=6λ/6d where θ is 
the angle between the ray direction and the normal

θ

6λ

6d

Basic diffraction equation: λ=d sin(θ)

θ

Diffraction gratings (9)

Can also get diffraction in the same direction if the 

wavelength is halved!

2λ4λ
6λ

8λ
10λ

12λ

General diffraction equation: n λ=d sin(θ)

θ



Dispersion (1)

• n λ=d sin(θ)

• Different colours have 

different wavelengths 

and so diffract at 

different angles

• Take red (λ=650nm), 

green (λ=550nm), and 

blue (λ=450nm) light 

and d=1.5µm

n=0
n=1

n=2

Dispersion (2)

• Angular dispersion of 
a grating is D=dθ/dλ
=n/d cos(θ)       

=n/�(d2−n2λ2)

• Increases with order

of the spectrum and 
when d≈nλ

• Note that high order 

spectra can overlap!

n=0
n=1

n=2



Between the peaks (1)

We also need to work out what happens in other 

directions.  Between n=0 and n=1 there is a direction 

where the light from adjacent sources exactly cancel 

each other out – just as for two slits!

λ/23λ/25λ/2 2λ3λ λ

Between the peaks (2)

Closer to n=0 there is a direction where light from 

groups of three adjacent sources exactly cancels out

With an infinite number of sources will get cancellation 

in every direction except for the main peaks!

λ2λ

phasors



Between the peaks (3)

With an finite number of sources the last effective 

cancellation will occur when the path length difference 

between the first and last sources is about λ

phasors

≈λ

Single slit diffraction (1)

• Consider a single slit illuminated by a 
plane wave source

• If the slit is perfectly narrow this will create 
a cylindrical wave

• If the slit has significant width we must 
treat it as a continuous distribution of 
sources and integrate over them



Single slit diffraction (2)

b
θ

Green line is normal to the blue lines, and forms 

a right angled triangle with smallest angle θ.  Its 

shortest side is the extra path length, and is of 
size δ = xsin(θ)

x

Consider a slit of width b 

and light coming from a 

point at a distance x from 

the centre

Light coming from x has an extra phase kδ

Single slit diffraction (3)

• Final amplitude is obtained by integrating 
over all points x in the slit and combining 
the phases, most simply in complex form

• A = �exp(ikδ) dx = �exp(ikx sin(θ)) dx 

• Integral runs from x=−b/2 to x=b/2 and then 
normalise by dividing by b



Single slit diffraction (4)

• A = sin[(kb/2)sin(θ)]/[(kb/2)sin(θ)]

• A = sin(β)/β with β= (kb/2)sin(θ)]

• Light intensity goes as the square of A

• I=I0[sin(β)/β]2

• I= I0sinc2(β)

Single slit diffraction (5)

Calculated intensity 

profile

Maximum at β=0

Minimum at β=±πSubsidiary maximum 

near β=±3π/2

Width defined by minima at β=(kb/2)sin(θ)=±π



Single slit diffraction (6)

Calculated intensity 

profile

Width defined by minima at β=(kb/2)sin(θ)=±π

Solution is θ=arcsin(2π/bk)=arcsin(λ/b)≈λ/b

Get significant diffraction effects when the slit 

is small compared to the wavelength of light!

Single slit diffraction (8)

� The Rayleigh Criterion says that two diffraction 

limited images are well resolved when the 

maximum of one coincides with the first minimum 
of the other, so θR=arcsin(λ/b)

� Alternative criteria can also be used



Resolving Power

• Basic ideas for the resolving power of a 
diffraction grating have been seen already, 
but now we can do the calculation properly

• Resolving power is defined as the 
reciprocal of the smallest change in 
wavelength which can be resolved as a 
fraction of the wavelength

Dispersion

• n λ=d sin(θ)

• Dispersion described 
by n dλ/dθ=d cos(θ)

• So the limiting 

wavelength resolution 

depends on the 

limiting angular 

resolution according 
to n δλ=d cos(θ) δθ

n=0
n=1

n=2


