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CP2: Optics

Jonathan Jones

Part 2: Wave Optics

Wave Optics

• In part 1 we saw how waves can appear to 
move in straight lines and so can explain 
the world of geometrical optics

• In part 2 we explore phenomena where 
the wave nature is obvious not hidden

• Key words are interference and diffraction

Summary

• Young’s slits

• Diffraction gratings

• Single slit diffraction

• Diffraction at a lens

Wave motion (1)

• See the waves lecture course for details!

• Basic form of a one-dimensional wave is 
cos(kx−ωt−φ) where k=2π/λ is the wave 

number, ω=2πν is the angular frequency, 
and φ is the phase

• Various other conventions in use
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Wave motion (2)

• Basic wave is cos(kx−ωt−φ)

• At time t the wave will look identical to its 
appearance at time 0 except that it will 
have moved forward by a distance x=ωt/k

• Wave moving the other way is described 
by cos(−kx−ωt−φ)

Plane wave (1)

• This is the basic equation for a wave on a 
string, but we can also use the same 
approach to describe a light wave 
travelling along the x-axis

– More complex versions for general motion

• Oscillations in the electric and magnetic 
fields which vary in space and time just 
like the motion of a string

Plane wave (2)

Plane wave is a series of parallel waves moving in one 
direction.  Note that waves are really 3D: this is a 2D slice!

Mark the peaks of the waves as wavefronts

Draw normals to the wavefronts as rays

Spherical wave

A plane wave impinging on a 
infinitesimal hole in a plate.

Acts as a point source and 
produces a spherical wave
which spreads out in all 
directions.

Finite sized holes will be 
treated later.
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Cylindrical wave

A plane wave impinging on a 
infinitesimal slit in a plate.

Acts as a point source and 
produces a cylindrical wave
which spreads out in all 
directions.

Finite sized slits will be treated 
later.

Remainder of this course will use slits unless specifically stated

Obliquity Factor

• A more detailed treatment due to Fresnel 
shows that a point source does not really 
produce a spherical wave.  Instead there 
is more light going forwards than sideways

– Described by the obliquity factor K=½(1+cosθ)

– Also explains lack of backwards wave

– Not really important for small angles 

– Ignored in what follows

Two slits

A plane wave impinging on a 
pair of slits in a plate will 
produce two circular waves

Where these overlap the 
waves will interfere with one 
another, either reinforcing or 
cancelling one another

Intensity observed goes as 
square of the total amplitude

Interference

Constructive: 

intensity=4

+

=

Destructive: 

intensity=0

+

=
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Two slit interference Two slit interference

Two slit interference Two slit interference
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Two slit interference Two slit interference

Peaks in light 
intensity in 
certain directions 
(reinforcement)

Minima in light 
intensity in other 
directions 
(cancellation)

Can we calculate these directions directly 

without all this tedious drawing?

Two slit interference (2)

• These lines are the sets of positions at 
which the waves from the two slits are in 
phase with one another

• This means that the optical path lengths
from the two slits to points on the line must 
differ by an integer number of wavelengths

• The amplitude at a given point will oscillate 
with time (not interesting so ignore it!)

Two slit interference (3)

Central line is locus of points at same 

distance from the two slits

Two path lengths 
are the same
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Two slit interference (4)

Next line is locus of points where distance 

from the two slits differs by one wavelength

Path lengths 
related by 
xleft=xright+λ

xleft xright

Two slit interference (5)

Next line is locus of points where distance 

from the two slits differs by one wavelength

Path lengths 
related by 
xleft=xright+λ

xleft xright

d

Two slit interference (6)

d

D

Interference pattern observed on a distant screen

y
θ

As d,y<<D the three blue lines are effectively 
parallel and all make an angle θ≈y/D to the normal.  
The bottom line is slightly longer than the top.

Two slit interference (7)

d
θ

Close up

Green line is normal to the blue lines, and forms 
a right angled triangle with smallest angle θ.  Its 
shortest side is the extra path length, and is of 
size d×sin(θ)≈dy/D
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Two slit interference (8)

View at the screen

Bright fringes seen when the extra path length is 
an integer number of wavelengths, so y=nλD/d

Dark fringes seen when y=(n+½)λD/d

λD/d

Central fringe midway between slits

Taking λ=500nm, d=1mm, D=1m, gives a fringe 
separation of 0.5mm

Lloyd’s Mirror

• There are a very large number of similar 
two-source interference experiments

• Lloyd’s Mirror features on the practical 

course!

• Uses the interference between light from a 
slit and its virtual image in a plane mirror

– See also Fresnel’s mirror, Fresnel’s biprism

Lloyd’s Mirror

Figure from script for OP01

Practicalities: the screen

• Young’s slits form an interference pattern 
on a screen at any distance

– Not an image!

– At large distances the interference points lie 

on straight lines at constant angles

• Increasing the distance to the screen 
increases the separation between the 
fringes but decreases their brightness
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Practicalities: the slits

• The treatment above assumes that the 
slits act as point sources
– Means that fringes can’t be very bright

• As slits get broader the outer fringes blur
– We will come back to this once we have 

looked at single slit diffraction

– Not a problem as long as slit width is much 
smaller than slit separation

– Allows central fringe to be identified!

Practicalities: the source (1)

• Young’s slits assumes a light source 
providing uniform plane wave illumination

• Simplest approach is to assume a point 

source far from the slits

– Spherical waves look like plane waves at a 
long distance from the source

• Such sources are not very bright

Practicalities: the source (2)

• A plane wave corresponds to a set of 
parallel rays

• This can be achieved by placing a point 

source at the focus point of a converging 
lens

• Can do a similar trick to see the fringes 
more clearly

– More of this when we look at gratings

Practicalities: the source (3)

• Still necessary to use a point source to 
avoid interference between light coming 
from different parts of the source!

• Detailed calculation is similar to that for slit 
size, so the source only needs to be small 
rather than a true point.

• Also turns out you can use a source slit as 
long as it is parallel to the two slits
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Practicalities: colours (1)

• The above all assumes a monochromatic
light source

• Light of different colours does not interfere 

and so each colour creates its own fringes

• Fringe separation is proportional to 
wavelength and so red fringes are bigger 
than blue fringes

• Central fringe coincides in all cases

Practicalities: colours (2)

Observe bright central fringe (white with coloured 
edges) surrounded by a complex pattern of colours.  
Makes central fringe easy to identify!

Interference (1)

• It is easy to calculate the positions of 
maxima and minima, but what happens 
between them?

• Explicitly sum the amplitudes of the waves 
A=cos(kx1−ωt−φ)+cos(kx2−ωt−φ)

• Write x1=x−δ/2, x2=x+δ/2 and use 
cos(P+Q)+cos(P-Q)=2cos(P)cos(Q)

• Simplifies to A=2cos(kx−ωt−φ)×cos(kδ/2)

Interference (2)

• Amplitude is A=2cos(kx−ωt−φ)×cos(kδ/2)

• Intensity goes as square of amplitude so 
I=4cos2(kx−ωt−φ)×cos2(kδ/2)

• First term is a rapid oscillation at the 
frequency of the light; all the interest is in 
the second term

• I=2cos2(kδ/2)=2[1+cos(kδ)]/2
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Interference (3)

• Intensity is I=2cos2(kδ/2)=1+cos(kδ)

• Intensity oscillates with maxima at kδ=2nπ
and minima at kδ=(2n+1)π

• Path length difference is δ=dy/D

• Maxima at y=Dδ/d with δ=2nπ/k and k=2π/λ
giving y=nλD/d

Exponential waves (1)

• Whenever you see a cosine you should 
consider converting it to an exponential! 
exp(ix)=cos(x)+ i sin(x)

• Basic wave in exponential form is   
cos(kx−ωt−φ)=Re{exp[i(kx−ωt−φ)]}

• Do the calculations in exponential form 
and convert back to trig functions at the 
very end

Exponential waves (2)

• Repeat the interference calculation

• Explicitly sum the amplitudes of the waves
A=Re{exp[i(kx−kδ/2−ωt−φ)]+exp[i(kx+kδ/2−ωt−φ)]} 
=Re{exp[i(kx−ωt−φ)]×(exp[−ikδ/2]+exp[+ikδ/2])} 

=Re{exp[i(kx−ωt−φ)]×2cos[kδ/2]}                            

=2cos(kx−ωt−φ)×cos[kδ/2]} 

• Same result as before (of course!) but can be a 

bit simpler to calculate

• Will use complex waves where convenient from 

now on

Exponential waves (3)

• We can do the sum in a slightly different way
A=Re{exp[i(kx−ωt−φ)]+exp[i(kx+kδ−ωt−φ)]}        

=Re{exp[i(kx−ωt−φ)]×(1+exp[+ikδ])}                     

=Re{exp[i(kx−ωt−φ)]×exp[+ikδ/2]×(exp[−ikδ/2]+exp[+ikδ/2])} 

=Re{exp[i(kx−ωt−φ+kδ/2)]×2cos[kδ/2]}

• Taking the real part now looks messy because 

of the extra phase term, but we can just wait a 

time τ such that ωτ=kδ/2 and everything comes 

back into phase.  What really matters is the 

absolute value of the wave.



11

Exponential waves (4)

• Use a complex amplitude to represent the wave

A=exp[i(kx−ωt−φ+kδ/2)]×2cos[kδ/2]

• The intensity of the light is then given by the 

square modulus of the amplitude:              

I=A*A=4cos2[kδ/2]

• This approach loses the rapid time oscillations, 

but we have previously ignored these anyway!  

Result is the peak intensity which is twice the 

average intensity.

Phasors (1)

• Something very similar occurs in circuit theory

• We represent an oscillation by a complex 
function, which basically works but we have to 
fiddle a few results at the end

• A better approach is to use phasors which are 
mathematical objects which are almost but not 
quite identical to complex numbers.  See Lorrain 
and Corson for the gory details.

• Phasors in optics are similar (but not quite the 
same!)

Phasors (2)

• A complex wave has an amplitude, an oscillatory 

part, and a phase ψ=A×exp[i(kx−ωt)]×exp[iϕ]

• Note that the phase term will depend on things 

like paths lengths measured in multiples of the 

wavelength

• The oscillatory bit is not terribly interesting, and 

we can combine the amplitude and phase to get 
the complex amplitude α=A×exp[iϕ]

• Interference is about adding complex amplitudes

Phasors (3)

• We can represent a complex amplitude as a two 

dimensional vector on an Argand diagram

• We can then get the sum of complex amplitudes 

by taking the vector sum

Increasingly out of phase

Length of resultant is reduced Phase of resultant can mostly be ignored
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Phasors (4)

• In some cases elegant geometrical methods can 

be used to say something about the sum of a set 

of phasors without doing tedious calculations

• No calculations actually require phasors to be 

used, and at this level they are not terribly useful

• Don’t worry about them too much!

Optical path lengths (1)

• We can change the appearance of a two slit 

interference pattern by changing the optical path 

length for light from one of the two slits

• Place a piece of transparent material with 

refractive index n and thickness w in front of one 

of the slits

• This increases the optical path length for light 
travelling through that slit by (n-1)×w, changing 

the phase of the light

Optical path lengths (2)

• We could recalculate everything from first 

principles, but it is simplest just to note that the 

central fringe corresponds to the point where the 

optical path lengths for the two sources are 

identical

• Light travelling through the transparent material 

has travelled a longer optical path and so the 

central fringe must move towards this slit to 
ccompensate

Optical path lengths (3)

λD/d

Simple case: waves arrive at the slits in phase and the 
central interference peak is exactly between the slits



13

Optical path lengths (4)

λD/d

One slit covered: waves arrive at the upper slit delayed 
by half a wavelength and the central interference peak is 
moved up by half a peak

Recognising the central peak

• Taking λ=500nm, a piece of glass 0.1mm thick 
with n=1.5 gives a shift of 100 fringes

• The above all assumes that we can recognise
the central peak, but in the naïve treatment all 
peaks look the same!

• For white light fringes the central peak is easily 
recognised as the only clear white fringe

• For monochromatic light imperfections (notably 
the finite slit width) means that the central peak 
will be the brightest

Optical path lengths (5)

• It might seem odd that we always talk about the 

transparent material being placed before the slit 

rather than after it

• This means that we have to do the optical path 

calculations from some apparently arbitrary point 

before the slit

• Why not place the transparent material after the 
slit?

Optical path lengths (6)

Situation superficially similar to the previous case, but in 
fact the light will travel through the transparent medium at 
an angle making calculations look messy!

?
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Optical path lengths (7)

• What about the apparently arbitrary start point?

• Rigorous approach is to start all calculations 

from the source, not from near the slits

• Also allows calculations on the effect of moving 

the source nearer to one of the two slits!

• This is also how you should think about 

imperfections like finite source sizes: different 

parts of the source lie at different distances from 
the two slits.

Diffraction gratings (1)

• A diffraction grating is an extension of a double 

slit experiment to a very large number of slits

• Gratings can work in transmission or reflection 

but we will only consider transmission gratings

• The basic properties are easily understood from 

simple sketches, and most of the advanced 
properties are (in principle!) off-syllabus

Diffraction gratings (2)

Circular waves are formed from each source

Diffraction gratings (3)

Huygens style reinforcement creates a forward wave
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Diffraction gratings (4)

Also get reinforcement at angles!

Diffraction gratings (5)

Reinforcement comes from successive waves from 
neighbouring sources

Diffraction gratings (6)

Draw rays normal to the wavefronts

Diffraction gratings (7)

Points on a wavefront must be in phase, so the extra 
distances travelled must be multiples of a wavelength

λ2λ
3λ

4λ
5λ

6λ
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Diffraction gratings (8)

From trigonometry we see that sin(θ)=6λ/6d where θ is 
the angle between the ray direction and the normal

θ

6λ

6d

Basic diffraction equation: λ=d sin(θ)

θ

Diffraction gratings (9)

Can also get diffraction in the same direction if the 
wavelength is halved!

2λ4λ
6λ

8λ
10λ

12λ

General diffraction equation: n λ=d sin(θ)

θ

Dispersion (1)

• n λ=d sin(θ)

• Different colours have 

different wavelengths 

and so diffract at 

different angles

• Take red (λ=650nm), 

green (λ=550nm), and 
blue (λ=450nm) light 

and d=1.5µm

n=0
n=1

n=2

Dispersion (2)

• Angular dispersion of 

a grating is D=dθ/dλ
=n/d cos(θ)       

=n/√(d2−n2λ2)

• Increases with order

of the spectrum and 
when d≈nλ

• Note that high order 

spectra can overlap!

n=0
n=1

n=2



17

Grating Spectrometer

θ

Light from a source is 
passed through a narrow 
source, collimated with a 
lens, dispersed with a 
grating, focused with a 
lens, and then detected

Measure intensity as a function of θ to get the 
spectrum (in practice it is better to measure 2θ, the 
angle between lines).  Real designs more complex!

Prisms or gratings?

• Gratings have many advantages

– Dispersion can be calculated!

– High orders lead to high resolution

– Reflection gratings don’t need transparency

• Gratings have a few disadvantages

– Intensity shared between different orders

– Can be improved by blazing the grating

“Natural” diffraction gratings

Wings of  butterflies (Blue Morpho)

Opals

Compact discs

Between the peaks (1)

We also need to work out what happens in other 
directions.  Between n=0 and n=1 there is a direction 
where the light from adjacent sources exactly cancel 
each other out – just as for two slits!

λ/23λ/25λ/2 2λ3λ λ
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Between the peaks (2)

Closer to n=0 there is a direction where light from 
groups of three adjacent sources exactly cancels out

With an infinite number of sources will get cancellation 
in every direction except for the main peaks!

λ2λ

phasors

Between the peaks (3)

With an finite number of sources the last effective 
cancellation will occur when the path length difference 
between the first and last sources is about λ

phasors

≈λ

Resolution of a grating

• The angular resolution of a diffraction grating 

can be calculated from the above.  If the grating 
has N slits then need λ≈Nd sinθ≈Nd θ which 

gives an angular resolution of δθ≈λ/Nd≈λ/W 

where W is the width of the grating

• Similar results can be calculated in many 

different ways, most of which are rather 

complicated but one of which we will see later… 

Fraunhofer diffraction (1)

• In the above we mostly treated diffraction 
gratings as a generalisation of a double 
slit.  In general we sum the amplitudes of 
light waves coming from all sources, and 
the intensity is the square modulus of the 
total amplitude

• For continuous objects replace the sum by 
an integral.  Best to use complex wave 
notation to make integrals simple
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Fraunhofer diffraction (2)

• In the general case we have to use the full 
theory of Fresnel diffraction (nasty!)

• In many important cases can use the 

simpler Fraunhofer approach

• This applies when the phase of the light 
amplitude varies linearly across the object

• Ultimately leads to the use of Fourier 
transforms in optics (next year!)

Fraunhofer diffraction (3)

• Fraunhofer diffraction applies when the 
source and the image are a long way from 
the diffracting aperture, so that it is 
illuminated and observed with plane 
waves.  Need distances greater than a2/λ
where a is the size of the object

• More practically can use lenses to create 
and observe parallel beams as seen 
above for diffraction gratings

Fraunhofer diffraction (4)

• Plane waves are a sufficient but not a 
necessary condition for Fraunhofer
diffraction, which is also applicable much 
more generally (see later)

• Key result in simple optics is a blurring of 
images in any optical system arising from 
the finite size of optical components

Single slit diffraction (1)

• Consider a single slit illuminated by a 
plane wave source

• If the slit is perfectly narrow this will create 

a cylindrical wave

• If the slit has significant width we must 
treat it as a continuous distribution of 
sources and integrate over them
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Single slit diffraction (2)

b
θ

Green line is normal to the blue lines, and forms 
a right angled triangle with smallest angle θ.  Its 
shortest side is the extra path length, and is of 
size δ = xsin(θ)

x

Consider a slit of width b 
and light coming from a 
point at a distance x from 
the centre

Light coming from x has an extra phase kδ

Single slit diffraction (3)

• Final amplitude is obtained by integrating 
over all points x in the slit and combining 
the phases, most simply in complex form

• A = ∫exp(ikδ) dx = ∫exp(ikxsin(θ)) dx 

• Integral runs from x=−b/2 to x=b/2 and then 
normalise by dividing by b

Single slit diffraction (4)

• A = sin[(kb/2)sin(θ)]/[(kb/2)sin(θ)]

• A = sin(β)/β with β= (kb/2)sin(θ)]

• Light intensity goes as the square of A

• I=I0[sin(β)/β]2

• I= I0sinc2(β)

Single slit diffraction (5)

Calculated intensity 
profile

Maximum at β=0

Minimum at β=±πSubsidiary maximum 

near β=±3π/2

Width defined by minima at β=(kb/2)sin(θ)=±π
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Single slit diffraction (6)

Calculated intensity 
profile

Width defined by minima at β=(kb/2)sin(θ)=±π

Solution is θ=arcsin(2π/bk)=arcsin(λ/b)≈λ/b

Get significant diffraction effects when the slit 

is small compared to the wavelength of light!

Single slit diffraction (7)

Calculated intensity 
profile

Width defined by minima at θ≈±λ/b

This definition gives the half width at first zero 

point but is roughly equal to the full width at 

half maximum height (FWHM)

Single slit diffraction (8)

● The Rayleigh Criterion says that two diffraction 

limited images are well resolved when the 

maximum of one coincides with the first minimum 
of the other, so θR=arcsin(λ/b)

● Alternative criteria can also be used

Resolving Power

• Basic ideas for the resolving power of a 
diffraction grating have been seen already, 
but now we can do the calculation properly

• Resolving power is defined as the 

reciprocal of the smallest change in 
wavelength which can be resolved as a 
fraction of the wavelength



22

Dispersion

• n λ=d sin(θ)

• Dispersion described 

by n dλ/dθ=d cos(θ)

• So the limiting 

wavelength resolution 

depends on the 

limiting angular 

resolution according 
to n δλ=d cos(θ) δθ

n=0
n=1

n=2

Grating Spectrometer

θ

Light from a source is 
passed through a narrow 
source, collimated with a 
lens, dispersed with a 
grating, focused with a 
lens, and then detected

The angular width of the diffracted beam is limited 
by its finite spatial width, which is given by W cos θ
where W is the width of the grating 

Single slit diffraction

Calculated intensity 
profile

Width defined by minima at β=(kb/2)sin(δθ)=±π

Solution is δθ=arcsin(2π/bk)=arcsin(λ/b)≈λ/b

In this case b=W cos θ

Resolving Power

• We have n δλ=dcos θ δθ and δθ=λ/Wcosθ

• Gives δλ=(dcos θ λ)/(nWcos θ)=d λ/nW or 

λ/δλ=nW/d

• But W is the width of the grating and d is the 

distance between slits so W/d is the number of 

slits on the grating, N

• Resolving power of grating is nN
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Slit width (two slits)

• The traditional treatment of the double slit 
experiment is that each narrow slit acts as 
a source of circular waves that interfere

• If the slits have finite width b they will only 

produce intense waves within an angle 
θ=arcsin(λ/b)≈λ/b and only see around d/b 

fringes where d is the slit separation

• See problem set for better treatment

Rectangular apertures

• A real slit is narrow in one dimension and 
very long (but not infinite!) in another

• The problem of a real slit can be solved in 

much the same way as an ideal slit but we 
now have to integrate over two dimensions

• Result is diffraction in both dimensions but 
the effect of the finite slit length can be 
neglected if it is many wavelengths long

Circular apertures

• The case of a circular hole is much like a square 

hole except that we have rotational symmetry

• Best solved by integrating in circular polar 

coordinates.  This turns out to be a standard 

integral leading to a Bessel function

• Intensity is an Airy pattern with a bright Airy disk

surrounded by Airy rings

• The resulting resolution is δθ≈1.22λ/W (radius of 

the Airy disk)

Airy disk and rings
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Resolution of a lens

• Even neglecting aberrations a lens cannot give a 

perfect image

• Treat a real lens of width (diameter) W as an 

ideal (infinite) lens, preceded by a circular 

aperture of diameter W which blurs the image by 

diffraction

• The resulting angular resolution is δθ≈1.22λ/W

Resolution of a camera (1)

• Simplest case is imaging an on axis infinitely 

distant point with a thin lens

• Angular diffraction leads to a finite spot size on 

the detector in the focal plane

Resolution of a camera (2)

• A lens of focal length f can focus a beam down 
to a spot of radius 1.22 fλ/W where W is the 
width (diameter) of the lens and thus the width of 
the light beam to be focused

• Note that resolution is better for blue (short 
wavelength) light than for red light

• There are corresponding limits on the ability of 
optical systems to produce parallel beams from 
point sources and on the ability of detectors to 
distinguish distant sources

Resolution of a camera (3)

• Get the same effect if the aperture is just behind 

the thin lens

• Fraunhofer diffraction still applies even though 

we don’t have plane wavefronts!
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Resolution of a camera (4)

• Get the same effect even if the aperture is well 

behind the thin lens

• Aperture behind the lens has the same effect as 

a larger aperture at the lens (similar triangles)

Resolution of a camera (5)

• Imagine surrounding the aperture with 
diverging and converging thin lenses

• This has no overall effect on the rays but 

causes the aperture to be illuminated with 
plane waves, so get Frauhofer diffraction

• Any aperture causes Fraunhofer diffraction 
when observed in the image plane!

Resolution of a telescope

• Resolution is usually limited by the width 
of the objective lens or the primary mirror

• Must ensure that all subsequent optical 

components are big enough that they don’t 
cut the beam down further

• Simple as focussing of beams means that 
all later components will be smaller than 
the objective

Examples

• The pupil of the human eye gives a limiting 

angular resolution around 0.1mrad (20arcsec).  

This corresponds to resolving the headlights on 

a car about 20km away.  With a small 125mm 

telescope the resolution is about 20 times better!

• Wavelength is just as important as diameter: the 

Arecibo telescope (300m diameter) has a 

limiting angular resolution of about 0.1mrad for 
3cm radiation, but only 25mrad at 6m
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Resolution of a microscope (1)

• Simplest approach is to work backwards 
and find the smallest spot size to which a 
beam of light can be focused

• In the paraxial limit we already know that 
the limiting spot size is 1.22 λ f/W and the 
smallest resolvable feature has size λ f/W

• General case was solved by Abbe using 
an analogy with diffraction gratings

Resolution of a microscope (2)

• Abbe showed that the smallest resolvable 
feature has size λ/2 sin(α) where α is half 
the angle subtended by the lens as seen 
from the focal plane

• For the paraxial case 2sin(α)≈ tan(2α)≈W/f

in agreement with previous result

• As sin(α) cannot exceed 1 the limit on 
resolution by any lens is λ/2

Resolution of a microscope (3)

• Can improve resolution still further by 
filling space between object and lens with 
fluid of refractive index n (oil objective)

• Limit is now λ/2 NA where NA=nsin(α) is 

the Numerical Aperture of the lens

• Given typical refractive indices the limiting 
resolution of a microscope is about 
λ/3≈135nm for blue light

Interference and Coherence

• Proper treatment of interference between 
different colours

• Coherence and its effects on interference
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Practicalities: colours (1)

• The above all assumes a monochromatic
light source

• Light of different colours does not interfere 

and so each colour creates its own fringes

• Fringe separation is proportional to 
wavelength and so red fringes are bigger 
than blue fringes

• Central fringe coincides in all cases

Practicalities: colours (2)

Observe bright central fringe (white with coloured 
edges) surrounded by a complex pattern of colours.  
Makes central fringe easy to identify!

Questions: colours

• Does it really make sense to talk about 
interference only occurring between light 
of exactly the same colour?  No source is 
truly monochromatic!

• Interference occurs by summation of 
amplitudes and surely this occurs 
whatever the waves look like?

Two source interference

• Replace the two slits by two idealised sources of waves.  If 
the two sources produce identical waves in phase with one 
another then the result will be identical to two slits!

• Perfectly practical with radio waves
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Two source interference

• If the two sources produce waves of different colours there 
will still be points where the amplitudes add constructively and 
destructively so will still get some sort of interference!

Exponential wave analysis (1)

• Use complex amplitudes to represent the waves 

A=exp[i(kx−ωt)]                            

• The intensity of the light is then given by half of 

the square modulus of the amplitude:                  
I=½A*A

• This approach loses the rapid time oscillations, 

which occur at the frequency of the light.  The 

factor of ½ is obtained by averaging over these. 

Rigorous calculations give the same result.

Exponential wave analysis (2)

• Consider interference between identical sources 

at distances x1=x−δx/2 and x2=x+δx/2

• A=exp[i(k(x−δx/2)−ωt)]+exp[i(k(x+δx/2)−ωt)]

• A=exp[i(kx−ωt)]×2cos[kδx/2]

• I=½A*A=2cos2[kδx/2]=1+cos[kδx]

• Standard interference pattern calculated before

Exponential wave analysis (2)

• Now consider two different sources

• A=exp[i(k1(x−δx/2)−ω1t)]+exp[i(k2(x+δx/2)−ω2t)]

• I=½A*A=1+cos[½ (k1+k2)δx−(k1−k2)x+(ω1−ω2)t]

• k1=k+δk/2, k2=k−δk/2, ω1=ω+δω/2, ω2=ω−δω/2

• I=1+cos[k δx−δk x+δω t]
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Exponential wave analysis (3)

• I=1+cos[k δx−δk x+δω t]

• The third term indicates that the interference 

pattern looks like a travelling wave and moves 

across the screen.  The light intensity at any 

point oscillates at frequency δω

• If the detector (camera, eye, etc.) has a 

response time slow compared with 1/δω then the 
pattern will wash out to the average intensity of 1

Exponential wave analysis (4)

• Thus we will only see interference patterns from 

two sources if their frequencies are closely 

matched compared with the response time of the 

detector!

• Now need to consider what happens if there are 

sources emitting two frequencies at both

positions.  The analysis is messy but not too bad 

with help from an algebra program

Exponential wave analysis (5)

• Result is a time varying term, which averages to 

zero, and a constant term which must be kept

• I=2+2cos[k δx]cos[δk δx/2]

• This is exactly the same result as you get by 

adding together two separate intensity patterns

• I=1+cos[(k−½δk) δx]+1+cos[ (k+½δk) δx]

Two colours

Patterns of constructive and destructive interference 
between two sets of fringes leads to a beat pattern in 
the total intensity
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Temporal coherence

• The normal two slits analysis derives two 

coherent sources by dividing the wavefronts 

from a single source.  We see interference 

between wavefronts which have left the source 

at different times.

• This only works if the time gap is small 

compared with the coherence time of the source 

which depends on the frequency bandwidth of 
the source: sharp frequency sources give more 

fringes!

Spatial coherence

• Spatial coherence describes the coherence 

between different wavefronts at different points 

in space. It is rather more complicated than 

temporal coherence as it also depends on the 

size (angular diameter) of the source

• Can be used the measure the angular diameter 

of the source!  This is the basis of Michelson’s 

stellar interferometer

• See Introduction to Modern Optics by Grant R. Fowles


