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Part 1: Geometric Optics



Why study optics?

• History

• Technology

• Simplicity

• Centrality

• Passing CP2



The problem of teaching optics

• Some feedback comments from 2011-12

1. Too much A-Level content

2. This was not a basic intro to the course! I 

hadn't studied optics before and found all 

the work far too advanced for me to 

understand.

• Can’t keep everyone happy! This course is 
aimed squarely at beginners but does 
assume knowledge of the absolute basics



Optics around 1700

• Lots of facts known 

about light

• Little understood 

about the underlying 

principles

• Newton making 

trouble as usual

• Waves or particles?



Waves or particles?

• Light travels in straight lines

– Waves travel in circles (chuck a rock in a 

pond and watch the ripples spread out)

– But particles in crossed beams would collide?

• Light reflects off mirrors and leaves at the 
same angle as it came in

– Makes sense for particles (conservation of 

momentum)



Waves or particles?

• Light bends (refracts) when moving 
between different media

– Newton had a semi-plausible explanation for 

particles

– Easy to explain for waves if they travel in 

straight lines!

)sin()sin( 2211 θθ nn =



Waves or particles?

• Diffraction effects not really understood

– Newton’s rings provide excellent evidence for 

wave behaviour, but Newton was unhappy 

with the wave model

• Underlying basis of colour hardly 
understood at all

• Polarization only recently discovered 
(Iceland Spar)



Huygens’s Problem

• For I do not find that any one has yet given 
a probable explanation of … why it is not 
propagated except in straight lines, and 
how visible rays … cross one another 
without hindering one another in any way.

• Christian Huygens “Treatise on Light” 
translated by Silvanus P. Thompson 
http://www.gutenberg.org/etext/14725



Huygens’s Principle

• Huygens’s principle tells us to consider each 

point on a wavefront as a new source of 

radiation and add the “radiation” from all of the 

new “sources” together. Physically this makes 

no sense at all. Light does not emit light; only 

accelerating charges emit light. Thus we will 

begin by throwing out Huygens’s principle 

completely; later we will see that it actually does 

give the right answer for the wrong reasons. 

(Melvin Schwartz, Principles of Electrodynamics)



Huygens’s Model

• Light is made up of a series of pulsations 
in the ether, an otherwise undectable 
substance filling all space 

• Each pulsation causes a chain of 
secondary pulsations to spread out ahead

• In certain directions these pulsations 
reinforce one another, creating an intense 
pulsation that appears as visible light



Huygens’s Construction

• Every point on a wavefront may be 
regarded as a source of secondary 
wavelets which spread out with the wave 
velocity.

• The new wavefront is the envelope of 
these secondary wavelets. 



Straight lines

• Straight wavefronts stay straight

• Points on the wavefront all move forward 
at the same speed in a direction normal to 
the wavefront.  All points on a wavefront 
correspond to the same point in time.

• Light rays travel along these normals



Problems

1. Why do wavefronts travel forwards and 
not backwards?

2. What happens at the edges?

• These questions can be answered with a 
more serious model but that is largely 
beyond the scope of this course.



Reflection

• Wavefront propagates 

in a straight line

• As it hits the surface it 

becomes a source of 

secondary wavelets

• Wavelets all “grow” at 

the same speed

• Envelope of these 

forms new wavefront



Reflection

• Reflected ray is at the 
same angle as 
incident ray

• Reflected wavefront is 
at the same angle as 
incident wavefront

• Occurs because the 
secondary wavelets 
grow at the same rate 
in both wavefronts

θθ



Image in a mirror

mirror

object

image

Since light normally travels in 
straight lines, the light rays 
appear to be coming from an 
“image” behind the mirror

to eye
screen blocks 
direct view



Refraction

• Refraction is easily explained if wavelets 
travel more slowly in glass than in air

The two green lines are 
both four wavelets long.  
The start points of each 
line are points on a 
wavefront and so the 
end points must also be 
corresponding points on 
the new wavefront



Refraction

• Refraction is easily explained if wavelets 
travel more slowly in glass than in air

•Cut diagram down to 
essentials.

•Add construction lines 
and rays

•Note common angles

θ2

θ1



Refraction

• The light ray takes the same length of time to 

travel along the two green paths

• Travels at different speeds: v=c/n, where n is the 

refractive index

n1sin(θ1) = n2sin(θ2)θ2

θ1 D

d1

d2

sin(θ1)=d1/D

sin(θ2)=d2/D
Snell’s law of refraction

d1/v1 = d2/v2



Some materials

Air: n=1.0003 Water: n=1.33

Diamond: n=2.4Glass: n=1.5–1.7



Fermat’s Principle

• Fermat’s Principle of Least Time says that the 

path adopted by a light ray between any two 

points is the path that takes the smallest time

• Huygen’s model or ideas such as QED can be 

used to show that the path must be a local 

extremum (minimum, maximum, or inflection)

• Basic ideas probably known by Hero of 

Alexandria and by Alhacen (Ibn al-Haytham)

• Similar ideas will be seen in mechanics!



Reflection (Fermat)

• At constant speed least 

time is equivalent to 

shortest distance

• Consistent with light 

moving in straight lines

• The green line is shorter 

than the red and blue lines

• Shortest path between A 

and B via the mirror!

A light ray takes 

the shortest (least 

time) path between 

two points

A B



Reflection (Fermat)

• Need to minimise 

total distance

A B

y y

x
a

• Or use geometrical insight to spot 

that the answer is obvious if you 

reflect point B in the mirror.
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Refraction (Fermat)

• At varying speed least time 

is not equivalent to 

shortest distance

• Light moves in straight 

lines in one medium but 

will bend at joins

• The green line is the 

quickest path between A 

and B!

A light ray takes 

the shortest (least 

time) path between 

two points

A

B



Refraction (Fermat)



Refraction (Fermat)

• Minimise total time taken to travel along path

x1

y1

x2

y2

d1

d2

Solve dt/dx1=0
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Refraction (Fermat)
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Refraction (Fermat)
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Reversibility

• Optical paths are always reversible

θ2

θ1

•A light ray travelling 
from glass into air will 
follow exactly the same 
path as a light ray 
travelling from air into 
glass, just in the 
opposite direction

•Obvious from Fermat



Critical angle

• A light ray travelling 

from a material with 

high refractive index 

to one with low 

refractive index is 

always bent away 

from the normal

• Angle is limited to 90º

θ<θc

θ≈θc

θ>θc

Beyond the critical angle light ray undergoes 

total internal reflection



Critical angle

θ<θc

θ≈θc

θ>θc

Beyond the critical angle light ray undergoes 

total internal reflection

n1sin(θ1) = n2sin(θ2)

At θ1 = θc, θ2 = 90º

sin(θc) = n2/n1

For glass to air   

θc ≈ sin−1(1/n)



Partial internal reflection

• For all angles less 

that the critical angle 

there is both a 

transmitted ray and a 

reflected ray

• Beyond critical angle 

light ray undergoes 

total internal reflection

θ<θc

θ≈θc

θ>θc

The reflected ray is always reflected at the 

incident angle



Optic fibres (light pipes)

• Light can travel along an optic fibre by a series 

of total internal reflections

• If first reflection is beyond the critical angle then  

all reflections will be; the limit of transmission is 

set by the transparency of the glass

• Real fibres are made from two sorts of glass



Optic fibres (light pipes)

• This process will also 

work if the fibre is 

curved, as long as the 

radius of curvature is 

not too small

• Curves cause a small 

fraction of the light to 

leak out making the 

fibre visible



Pane of glass

• Light ray is refracted 
at both surfaces

• Ends up travelling in 
original direction but 
slightly offset

• Weak reflections at 
each surface

• Both reflections travel 
in same direction, but 
slightly offset

n



Sign conventions

• Once we switch from pictures to 
calculations we need a sign convention

• Sign conventions give rise to more 
confusion than any other topic, but 
fundamentally they are nothing more than 
a set of rules for choosing signs of 
distances in a consistent manner

• Similar problems occur in mechanics!



Sign conventions in mechanics

• The right way to do mechanics is to start 
by defining an axis system and then stick 
rigorously to this through the calculation

• For example we might put the y-axis 
pointing up so that distances upwards are 
positive.  This means that the acceleration 
due to gravity must be negative



Sign conventions in mechanics

• For simple problems where we know 
roughly what the answer will be it is very 
tempting to fudge the axes and equations 
so that most things come out positive

• This works nicely for simple problems but 
can collapse in a messy heap when things 
get a bit more complicated



Sign conventions in optics

• In optics the “define an axis and stick to it” 
approach is called the geometric sign 
convention

• The “fudge things and hope for the best” 
approach is called the real is positive sign 
convention

• Following most books I start with the “real 
is positive” approach



Real and apparent depth

• If an underwater 

object is viewed from 

above it will appear to 

be in a different place 

from where it really is

• More on images later!

• Apparent depth is 

reduced by a factor of 

the refractive index n

index 1

index n

Object

Image



Real and apparent depth

index 1

index n

n=sin(θ)/sin(φ) 

≈tan(θ)/tan(φ)

tan(θ)=AB/IB 

tan(φ)=AB/OB

n=(AB/IB)/(AB/OB)

=OB/IB

All rays appear to come 
from point I at depth OB/n

θ

θ

φ

φ

AB

I

O



Refraction at a prism

α
β γ

δ

A

D=(α−β)+(δ−γ)D

A=β+γA

1) geometry

2) optics sin(α)=n×sin(β) sin(δ)=n×sin(γ)

refractive index n



sin(α)=n×sin(β) sin(δ)=n×sin(γ)

Small angles

α
β γ

δ

A

D=(α−β)+(δ−γ)D

A=β+γA

1) geometry

2) optics α=n×β δ=n×γ

refractive index n

D=(n−1)×β+(n−1)×γ=(n−1)×(β+γ)=(n−1)×A



Dispersion

• Refractive index 

varies with frequency 

(dispersion).  Usually 
n increases with 

frequency

• For visible light in 
glass (n−1) typically 

increases by around 

1–4% from red to blue

• Get an angular 

dispersion of about 1º

• Can be useful (for 

spectroscopy) or 

annoying (chromatic 

aberration)



Three thin prisms

A stack of three prisms will cause three parallel 
rays to meet at a single point (a focus)

Refraction actually occurs at the 

two surfaces, not in the middle!



A lens

A lens will cause three parallel rays to meet.  The 
right shape will cause all parallel rays to meet.

Refraction actually occurs at the 

two surfaces, not in the middle!



Approximations

“Geometrical optics is either very simple or very 
complicated”. Richard Feynman

Paraxial approximation: only consider paraxial rays 
which lie very close to the optical axis and make small 
angles to it.  This means that all important angles are 
small, and so we can assume that sin(θ) ≈ tan(θ) ≈ θ.

Thin lens approximation: width of all lenses is small 
compared with other relevant distances, and so can be 
ignored



The lens formula (1)

u v

h
θ φ

D=θ+φ

D = θ +φ = (n−1)×A

θ ≈ h/u φ ≈ h/v

rays focussed if

A ≈ h/C



The lens formula (2)

A lens is formed by a pair of curved surfaces.  The 
angle of the equivalent prism is the angle between the 
surface tangents, which equals the sum of α and β.

α β

r1 r2
h

For spherical surfaces α ≈ h/r1 and β ≈ h/r2 where r1

and r2 are the radii of the two spheres



The lens formula (3)

u v

h
θ φ

h/u + h/v = (n−1) × (h/r1+h/r2)

1/u + 1/v = (n−1) × (1/r1+1/r2) = 1/f

D=θ+φ



A lens (Fermat)

•Light can take several different paths from A to B

•All paths must be minimum time, so all must take 
the same time!  Lens must be shaped so that extra 

length in air cancels shorter length in glass 

A B



Special cases

1/u + 1/v = 1/f = (n-1) × (1/r1+1/r2) 

a) When the source is a long way away (u → ∞) the light 
rays are parallel to the axis and are focussed onto the 
axis at a distance f, the focal length.

b) When the source is one focal length (u = f ) away from 
the lens the light rays are focussed at infinity, forming a 
parallel beam (reciprocity!).



Newtonian form

• The lens equation used above is in Gaussian form, in 
which all distances are measured from the lens centre

• Newton chose to measure all distances from the relevant 
focal point so that u=f+xo and v=f+xi

• Solving the lens equation in these variables gives the 
Newtonian form xoxi=f2

• Can be simpler to use in some cases



f

Extended objects

h

v

u

H

Light from points away from the axis is 
also focussed at corresponding points

f



Extended objects

h

f

v

u

H

H = h × v/u

Similar triangles!

f



Extended objects

h

f

v

u

H

h/f = (h+H)/v = h/v + h/u

Similar triangles!

f



Extended objects

h

f

v

u

H

H/f = (h+H)/u = H/v + H/u

Similar triangles!

f



Focal plane

Parallel rays are focused onto the focal 
plane: in the limit u→∞ then v→f

The lens 
converts 
angles to 
positions!



Landscape camera

Parallel rays are focused onto the focal 
plane: in the limit u→∞ then v→f

Place film or a 
CCD detector 
in the focal 
plane.  If the 
object is not at 
infinity then 
must move 
lens away 
from detector 
or decrease 
its focal length



Real images

• A converging lens will form a real image of an object on 
the opposite side of the lens, as long as the object is 
placed at least one focal length away.

• A real image can be directly detected using, for example, 
photographic film, a CCD chip, or just a piece of paper

• A real image can also be detected indirectly using a 
suitable optical system, such as a camera or a human 
eye, which comprises some lenses and a direct detector, 
such as film or the retina.  



Magnification of real image

h

f

v

u

H

Image is magnified by 
H/h=v/u and inverted

f

Magnification can be defined either as v/u or 
as –v/u depending on conventions



Inverting lens

• A special case occurs when u=2f

• Solving 1/u+1/v=1/f gives v=2f

• Real image is inverted but same size as object

• Minimum distance between object and image



Virtual images

• A diverging lens will form a virtual image of an object on 
the same side of the lens.

• A virtual image cannot be directly detected using, for 
example, photographic film

• A virtual image can be detected indirectly using an 
optical system, such as a camera or a human eye. 

• Virtual images are very familiar to us: the image in a 
plane mirror is a virtual image. 



Virtual image in a mirror

mirror

object

image

Since light normally travels in 
straight lines, the light rays 
appear to be coming from the 
virtual image

To optical apparatus (eye)



Virtual image with a lens

light source 
(object)

apparent position 
(virtual image)

Virtual images of extended objects are scaled down 
by v/u and upright (draw a ray diagram to check)



Lens summary

Object Image type Location Orientation Size

Converging Lens (f>0)

∞>u>2f Real f<v<2f Inverted Reduced

u=2f Real v=2f Inverted Same size

2f>u>f Real 2f<v<∞ Inverted Magnified

u=f Beam ±∞

u<f Virtual Erect Magnified

Diverging lens (f<0)

Anywhere Virtual f<v<0 Erect Reduced



Lens formula (4)

1/u + 1/v = 1/f = (n−1) × (1/r1+1/r2) 

• The lens (makers) formula can be generalised to 
arbitrary lenses and to real and virtual images as long as 
an appropriate sign convention is used.

• For simple systems use the real is positive convention.  
Distances to real objects and images are positive and to 
virtual objects and images are negative.  Radii of surfaces 
are positive if they cause deviations towards the axis and 
negative if they cause deviations away from the axis.



Lens as two surfaces

• The treatment of a lens given previously treats 

both surfaces simultaneously

• An alternative approach is to treat the two 

surfaces separately, treating a thin convex lens 

as two thin planoconvex lenses

• Systems of two lenses are non-examinable, but 

case of two thin lenses at same point is simple!



Lens power approach

• Start from the formula for a planoconvex lens of 
radius R and refractive index n:                   

1/u+1/v=(n−1)/R=1/f

• Thin lenses in contact combine by adding their 

powers, which are just the reciprocals of the 
focal lengths: 1/f=1/f1+1/f2

• Thus obtain 1/u+1/v=(n−1)[1/R1+1/R2]



Direct approach (1)

• Where does this rule come from?  Assume that 

the first surface creates a virtual image which 
acts as an object for the second surface



Direct approach (2)

• Note that u1=u, v1=−u2 and v2=v, so adding 

equations gives desired result!

u1v1

v2u2

1/u1+1/v1=(n−1)/R1

1/u2+1/v2=(n−1)/R2



Sign conventions

• Treatments using this approach often use a 

geometric sign convention where the object is at 

a negative distance from the lens.

• The curvature of a spherical surface is positive if 

the centre lies at a positive distance from the 

surface and negative if the other way round.

• For a biconvex lens the first surface is positive 

and the second is negative

• Formula is 1/u+1/v=(n−1)[1/R1−1/R2]



Lens types

Converging lenses Diverging lenses



The mirror formula

α β γ

θ

θ

O C I

ALine CA is normal to mirror surface 
so angles of incidence and 
reflection are the same

Geometry: β=α+θ and γ=α+2θ so α+γ=2β

Small angles: α≈AP/OP etc.

1/u + 1/v = 2/r = 1/f

r

P



• A spherical mirror will form a point image of a 

point object under paraxial approximations

• The mirror formula can be generalised to 

arbitrary mirrors with a sign convention.

• Concave mirrors normally create real images in 

front of the mirror and have positive radii

• Convex mirrors create imaginary images behind

the mirror and have negative radii.

Mirrors and images (1)



• A ray through the centre of curvature is reflected 

in the same direction.  A ray through the focus is 

reflected  parallel to the axis and vice versa.

Mirrors and images (2)

C F

1/v = 1/f−1/u = 1/1−1/3 = 2/3 giving v=3/2

Image real and inverted and scaled by v/u=1/2

C
o
n
c
a
v
e



Mirrors and images (3)

Object at C gives a real 
inverted unmagnified 
image at C

Object between C 
and F gives a real 
inverted magnified 
image beyond C



Mirrors and images (4)

Object at F gives no 
image but creates a 
parallel beam of rays 
with different heights 
appearing at different 
angles



Mirrors and images (5)

Object closer than F gives an enlarged upright 
virtual image behind the mirror.  This is how 
shaving/makeup mirrors work.  Magnification is 
greatest when the object is near F.



Mirrors and images (6)

With a convex mirror the image is always virtual 
and located behind the mirror and is always smaller

than the object



Mirror sign conventions

• Sign conventions in treatments of mirrors 
are almost hopelessly confused

• Real is positive vs Geometric

• Measuring geometric distances left to right 
or along the light direction

• Negating magnification or not

• Usually just have to work it out



• From the mirror formula we see that if a 
light source is placed at the focal length 
(r/2) from a spherical mirror then an image 
will be formed at infinity, indicating that a 
parallel beam of light is produced

• But it is well known that a parabolic mirror 
is necessary to create a parallel beam!  
What’s going on?

Parabolic Mirrors (1)



• We can deduce the shape needed from 

Fermat’s principle or from straight wavefronts

Parabolic Mirrors (2)

Place a source as 

indicated at the “focus” of 

the mirror.  This will 

produce plane wavefronts 

if the red lines all have 

the same length 



• Geometric definition of a parabola: the locus of 

all points equidistant from a line and a point at a 

distance 2a from the line (the focus)

Parabolic Mirrors (3)

a

a

d1

d2

x

Solve for 
d1=d2

Solution is 
y=x2/4a



• We can immediately deduce that a parabolic 

mirror will produce a beam of light from a source 

placed at its focus

Parabolic Mirrors (4)

From the definition of a 

parabola the green lines all 

have the same length as the 

corresponding blue lines.  

Thus all the optical paths 

have the same total length!



• So what about spherical mirrors?

Parabolic Mirrors (5)

The bottom of a parabola 
looks pretty much like a circle!

Consider a circle radius r 
centred at (0,r)

y = r−√(r2−x2) ≈ x2/2r 

A small portion of a spherical mirror radius r looks just 

like a parabolic mirror with a focus a=r/2.  Thus for 

paraxial rays we can use spherical mirrors!



Angular size

• A small object looks larger if brought nearer to the eye

What matters is the 
angle subtended by the 
object at the eye: the 
angular size.



Near point

• A small object looks larger if brought nearer to the eye.

• The lens of the eye can vary its focal length so as to 
create a sharp real image on the retina for objects at 
different distances.

• The range of focal lengths of the eye is limited: it can 
focus on objects between infinity and the near point or 
least distance of distinct vision D≈250 mm.

• Far sighted people have a larger value of D and so 
cannot focus close up.  Short sighted people cannot 
focus at infinity.  These can be corrected with simple 
lenses (“glasses”)



Magnifying glass (1)

• A small object looks larger if brought nearer to the eye.

• But if the object is brought closer than D then the eye 
cannot focus on it, which limits this approach

• A magnifying glass is a converging lens which can be 
placed in front of the eye enabling the eye to focus on 
objects much nearer than D and so see bigger images

Jeweller’s 
Loupes



Magnifying glass (2)

• The simplest way to think about a magnifying glass is 
that it increases the power of the eye’s lens (decreases 
its focal length) so that it can focus on objects at a 
distance d nearer than D

• This increases the angular size of the object, and thus its 
apparent size, by the ratio D/d

• Equivalently the lens forms a virtual image of the object 
which the eye can focus on

• Usually explained by drawing ray diagrams and spotting 
similar triangles, but these can be confusing

• Use algebra instead!



Magnifying glass (3)

• Assume the magnifying glass is a thin converging lens 
placed directly in front of the eye

• If the object is placed at a distance f from the lens then 

the virtual image will be formed at infinity, and it is easy 
for the eye to focus on this

• The achievable magnification is then given by D/f

• For example, a typical Loupe has f=2.5cm, and so will 
give a magnification of 10 when the object is placed 
2.5cm away



Magnifying glass (4)

f

Image formed at infinity

D

Object placed at 
near point

Object placed at 
focal point



Magnifying glass (5)

• In fact you can get a slightly higher magnification by 
placing the object slightly closer than f

• This will create a virtual image nearer than infinity.  As 
long as it is no closer than D the eye can focus on it.

• Limiting distance comes from solving 1/u−1/D=1/f to get 
u=Df/(D+f)

• Maximum magnification is then given by D/u=D/f+1



Magnifying glass (6)

u
f

D

Image formed at near point



Magnifying glass (7)

• This is not actually how most people use magnifying 
glasses!

• Instead they place the magnifying glass close to the 
object and observe from a distance

• This is fairly simple to analyse in the case where the 
magnifying glass is placed one focal length away from 
the object

• Image is formed at infinity with angular size determined 
by the distance of the object from the lens

• Magnification is then given by D/f



Magnifying glass (8)

f

Image formed at infinity



Magnifying glass (9)

3f

Real image formed between the lens and the eye

Seen as a reduced inverted image



Optical instruments

• A single lens can be used to explain magnifying lenses 
and glasses/contact lenses but most useful optical 
instruments contain two or more lenses or mirrors.

• Details are largely non-examinable but we will study 
systems of two “lenses” in some detail and look in outline 
at more complex systems.

• Will continue to work with the thin lens and paraxial 
approximations.  In reality multi-lens systems are highly 
vulnerable to the breakdown of these approximations 
giving rise to “aberrations” which we will only touch on.



Ray tracing with two lenses (1)

• We can calculate the paths of light rays in multi-lens 
systems by treating them as a series of singles lenses 
one after another

• The simple methods of ray tracing, however, become 
complicated as a ray which is “special” for one lens 
(parallel to the axis, or through the centre, or through the 
focus) will not be “special” for the next lens

• Key trick is to use “assistant rays” parallel to the ray of 
interest which pass through the centre of the second 
lens.  The assistant ray will then meet the ray of interest 
in the focal plane of the second lens.



Ray tracing with two lenses (2)

Can ray trace in complex systems by constructing “assistant rays” parallel to 
the ray of interest and passing through the centre of a lens



Astronomical telescope (1)

• The simple astronomical telescope is constructed out of 
two converging lenses and is used to observe an object 
which is far away, effectively at infinity.

• The first converging lens forms a real inverted image of 
the object.  This could be observed directly with a 
detector such as a CCD chip, but in general we want to 
observe with an eye.

• The second converging lens forms a virtual image of this 
intermediate image at infinity so that the eye can easily 
focus on it.



Astronomical telescope (2)

Pupil position

Two converging lenses (objective and eyepiece) 
are separated by the sum of their focal lengths fo
and fe (red dashes mark the common focal plane)

Optimal pupil position is behind the eyepiece lens 
as indicated.  In other positions the field of view is 
reduced

fo fe



Astronomical telescope (3)

To find the angular magnification consider only the 
rays which pass through the centre of the first lens

The image is inverted and magnified by a factor fo/fe
(by triangles with focal plane and optical axis)

fo fe

Draw lines parallel to these rays which pass 
through the centre of the second lens



Graticules

Pupil position

Anything placed at the focal plane will also be 
easily observed by the eye.  If a graticule (a grid of 
wires) or a reticle (cross hairs) is placed here then it 
will be clearly visible superimposed on the image of 
the distant object.  Can be used for measurements 
or in telescopic sights.

fo fe



Practicalities (1)

• To get the maximum magnification need to increase fo or 
decrease fe.  A large value of fo requires a very large 
telescope, while a small value of fe requires a very 
powerful lens which will have serious aberrations.  This 
can be partly overcome using a diverging Barlow lens

which increases the effective value of fo.

f
feffective

objective

Barlow



Practicalities (2)

• If the inversion of the image is a problem it can be 
overcome using an inverting lens (or more practically a 
pair of lenses) or by reflecting the image twice using 
mirrors or prisms set to give total internal reflection.

• Widely used in terrestrial telescopes and binoculars, but 
irrelevant in astronomical telescopes

Inverting lenses will lengthen 
the telescope tube, but mirrors 
can shorten the tube by folding 
it up



Practicalities (3)

• The diameter of the “exit pupil” (the width of the bundle 
of parallel rays at the ideal pupil position) is given by the 
diameter of the objective lens divided by the 
magnification of the telescope.

• If the exit pupil is smaller than your actual pupil (7mm 
under ideal conditions) then the image will appear less 
bright than the object viewed directly, so high 
magnification telescopes require very large objective 
lenses making them very heavy.

• The position of the exit pupil can be moved using a field 

lens in the focal plane



Field lens (1)

A converging lens is placed in the common focal 
plane of the objective and eyepiece lenses.  The 
field lens bends the rays without making them 
converge or diverge, shifting the exit pupil.  If the 
lens power is chosen such that 1/ff=1/fo+1/fe so that 
the field lens images the objective on the eyepiece 
then the exit pupil is moved to the eyepiece lens.

fo fe



Field lens (2)

• In practice it is preferable to place the exit pupil slightly 
behind the eyepiece lens (easier to put your eye there!)

• Also preferable to place the field lens not quite in the 
focal plane (1) to permit a graticule to be placed in the 
focal plane, and (2) to prevent any imperfections in the 
field lens being imaged by the eyepiece.  Compound 
eyepieces can get very complex!

• Detailed drawing or calculations get quite tricky at this 
point.  Real optical instruments are designed with the 
help of computer programs, which also use exact 
calculations rather than making approximations.



Practicalities (4)

• The effects of aberrations, which arise from break downs 
in the approximations used, are very important.  We will 
look briefly at some of these later.

• The effects of diffraction, which limit the resolution 
achievable with any optical instrument, will be treated in 
Hilary term.  For the moment just note that the bigger the 
objective lens the better!  A traditional rule of thumb for 
the practical limit of magnification is to multiply the 
objective diameter in inches by 60.

• Distortion by temperature fluctuations in the air is also a 
major problem for earth based telescopes



Focusing

• In principle you don’t need to focus an astronomical 
telescope as the object is at a fixed distance (infinity).

• Do need to focus terrestrial telescopes

• Also may need to correct for short sighted observers 
who need the image closer than infinity

• Object and objective lens are fixed so focus by moving 
the eyepiece lens towards or away from the objective.



Galilean telescope (1)

The Galilean telescope uses a diverging lens for 
the eyepiece.  The algebra is identical but the 
eyepiece has a negative focal length and so must 
be placed in front of the focus of the objective, and 
the magnification is positive (image is upright).  
There is no good pupil position!

fo

fe



Galilean telescope (2)

• The very poor exit pupil of the Galilean telescope means 
that it has a very restricted field of view, and so is rarely 
used as a telescope.  It does, however, find use for 
changing the width of parallel beams of light

• Better than an astronomical telescope for reshaping 
intense laser beams as it avoids extreme intensities at 
the focal plane



Reflecting telescopes (1)

A reflecting telescope replaces the objective lens 
with a converging mirror.  The conceptually simplest 
design puts a detector at the prime focus or an 
eyepiece just beyond it.  More practical designs 
exist.

fofe

prime focus

Only axial 

rays are 
shown here



Reflecting telescopes (2)

• Many advantages over refracting telescopes:

– Large mirrors much easier to make than large lenses

– No chromatic aberration at main mirror.  With prime 
focus photography there are no lenses and so no 
chromatic aberration at all

– Don’t need transparent materials

• Partial blocking of aperture is not ideal but not awful

• Essentially all large telescopes use reflecting designs



Secondary mirrors

A secondary mirror allowing a longer focal length to 
be “folded up” in a short tube, and also allowing the 
detector or eyepiece to be placed conveniently

Secondary mirror supports are a minor issue, 
leading to “spikes” visible around bright stars.



Newtonian telescope

Plane mirror at 45 degrees directs light to a focus 
on one side of the main telescope tube.  The 
secondary mirror can be quite small in this case



Gregorian telescope

A converging secondary mirror is placed after the 
prime focus.  This loses the advantage of “folding 
up” the optical path, but the second real image has 
been inverted twice and so is the right way up!



Cassegrain telescope

A diverging secondary mirror acts like a Barlow 
lens, allowing a very long focal length to be “folded 
up” in a short tube.

Almost all modern telescopes are variants of the 
Cassegrain design



Compound microscope (1)

Similar to the astronomical telescope except that 
the (small) object is placed very near the focus of 
the objective lens.  The objective lens forms an 
enlarged inverted real image which is observed 
using the eyepiece as a simple magnifier with the 
image formed either at infinity (as shown) or at D.

fe



Compound microscope (2)

Total magnification of the system is the product of 
the magnification achieved by the objective (v/u) 
multiplied by the magnification achieved by the 
eyepiece (D/fe).

fevu



Compound microscope (3)

Real microscopes replace the single objective lens 
with a pair of lenses: a strong objective lens to 
make a beam of parallel rays and a weak tube lens 
to form a real image.  Magnification of the objective 
is the ratio of the two focal lengths ft/fo.  Alternatively 
the tube and eyepiece lenses form a telescope to 
observe virtual image formed by objective lens.



Focusing

• In compound microscopes the distance between the 
tube and eyepiece lenses is usually fixed.

• Moving the objective lens has no effect as the light rays 
are parallel between the objective and tube lenses.

• Focus a microscope by moving the object with respect to 
the objective lens (naively to its focal point).



Aberrations

• All optical instruments are subject to aberrations which 
arise from breakdowns in approximations

• Spherical aberration and coma arise from the breakdown 
of the paraxial approximation in lenses and mirrors

• Chromatic aberration arises from frequency dispersion 
(lenses only)

• Many other minor issues!  But these are the big three.

• Optical surfaces should be smooth to within fractions of 
a wavelength



Spherical aberration

• Outer parts of lens 

are too curved so 

focal length becomes 

shorter at the edges.

• Can be reduced with 

aspheric lenses or 

mirrors (parabolic 

mirrors work well).
Spherical aberration 

arises because spherical 

surfaces are not quite 

the right shape



Coma

• Can be reduced with 

aspheric designs

• But parabolic mirrors 

are very susceptible 

to coma, so hard to 

reduce both spherical 

aberration and coma 

at the same time

• Multiple elements can 

compensate each 

other

Coma arises from off-

axis sources, so image 

looks worse at the edges



Chromatic aberration

Variation in refractive index means that the focal length of a 
lens depends on wavelength and so it is impossible to focus 
all colours to the same point.  The achromatic doublet uses 
errors in two lenses to cancel each other, so red and blue 
light have the same focal length.  Apochromatic lenses are 
even better.



Graded index (GRIN) lenses

• Instead of changing shape use a higher refractive index 
in the middle.  Obvious how they work using Fermat

• Complex to manufacture but they work very well.

• Can combine shaping with GRIN effects

• Natures uses GRIN extensively in animal eyes



Eyepieces

• Modern telescope eyepieces can be very complex!  
Analysis is well beyond the scope of this course.



Schmidt–Cassegrain

• Cassegrain telescope 

with spherical mirrors 

will be vulnerable to 

spherical aberration

• An aspheric lens is 

placed at the front to 

correct this

• Basis of popular 

designs for “amateur” 

systems P
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Ritchey–Chrétien telescope

• A Cassegrain design 

with two hyperbolic 

mirrors giving low 

spherical aberration 

and coma

• Expensive to build 

and very hard to test

• Standard design for 

big telescopes such 

as Hubble




