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Abstract
In this article we consider nuclear magnetic resonance (NMR) as

an example of a quantum technology; we consider in particular de-
tail the implementation of quantum computers using NMR. We begin
by outlining the physical principles underlying NMR, and give an in-
troduction to the quantum mechanics involved. We next discuss the
general characteristics of quantum technologies and the ways and ex-
tent to which these characteristics are expressed in NMR. We then
give an introduction to the subject of quantum computation and its
implementation using NMR. Finally, we describe some spectroscopy
techniques which also exploit the quantum nature of NMR.

∗To whom correspondence may be addressed.
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1 Introduction

Quantum physicists become accustomed to the glamour of their field. Their
subject is the very small, the very strange, the theoretically forbidden, and,
usually, the very difficult. It is easy to forget, after wrestling with the more
exotic aspects of the microscopic world all day, that quantum physics might
also include aspects which are concrete, wet, and, worst of all, occasionally
organic. One of these disconcertingly substantial facets of quantum mechan-
ics is Nuclear Magnetic Resonance spectroscopy (NMR). While physicists
generally leave NMR to chemists, biochemists, and doctors, NMR does in
fact have many interesting quantum aspects; liquid-state NMR is an unusual
and often overlooked example of a quantum technology. NMR has recently
been used to perform quantum computations which use quantum effects to
achieve non-classical increases in computational efficiency. Many spectro-
scopic techniques also exploit quantumness to extract otherwise inaccessible
geometric information about a molecule or to probe uncooperative atoms
by giving them the attributes of more cooperative atoms.

2 Basics of NMR spectroscopy

Nuclear magnetic resonance was first observed in 1946 by two groups who
independently probed the behaviour of the hydrogen nuclei (in water and
paraffin) in strong magnetic fields. The physicists who discovered it antici-
pated it would be an ideal method for measuring the magnetic moments of
various atomic nuclei, but further investigation revealed that the resonance
frequency of a nucleus was influenced by its chemical environment. This
unfortunate dependence on chemical details made the technique useless for
the simple physical experiments envisioned but simultaneously transformed
it into a valuable spectroscopic tool [1]. NMR is now an important analytic
method in many fields, including chemistry, biology, medicine, materials
science, and geology.

In essence, NMR is the study of transitions between the Zeeman levels
of an atomic nucleus in a magnetic field. For experimental and theoretical
convenience, attention is often restricted to the spin-half nuclei. In the
presence of a magnetic field Bz, directed along the z-axis, the degeneracy of
the two spin states of a spin-half nucleus is lifted by the Zeeman Hamiltonian,

H = −1
2~γσzBz (1)

where γ (the gyromagnetic ratio) is a constant characteristic of the nucleus
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and σz is one of the Pauli spin matrices. The allowed energy levels are
multiples of the eigenvalues of σz; that is,

E = ±1
2~γBz (2)

In order to make E a reasonable size, Bz is made as large as possible by using
sophisticated superconducting electromagnets. The most advanced of these
have fields around 20 T, which is approximately 400 000 times the earth’s
magnetic field, while typical laboratories might have magnets whose field
is about 5–15 T. These extraordinarily strong magnets are also elaborately
engineered to set up fields which are homogeneous across the sample to
within one part in 1010.

What justifies this level of effort in manufacturing strong homogeneous
magnets and makes equation (2) interesting is that the precise Bz expe-
rienced by a nucleus in a magnetic field, while largely determined by the
magnet, is also affected by tiny fields set up by any nearby electrons, so
that the same nucleus in different chemical environments will have slightly
different energy levels. The presence of such a set of energy levels can be
detected by spectral absorption as long as we can control some interaction
that causes transitions between levels; in the case of NMR this is provided
by the coupling between the nucleus and a rotating (or alternating) mag-
netic field applied perpendicular to the main field with an angular frequency
such that

~ω = ∆E (3)

where ∆E is the spacing between energy levels, and ω lies in the radiofre-
quency region of the spectrum for currently achievable magnetic fields.

Although what we have described is already a useful tool for chemical
analysis, it doesn’t incorporate any of the spookier features of quantum me-
chanics. To do this, we need to turn our attention to molecules which contain
more than one spin-half nucleus, since the second important interaction in
liquid-state NMR, responsible for the creation of non-classical correlations
between spins, arises from spin–spin interactions in these systems. Perhaps
surprisingly, the most important spin–spin coupling is not dipole–dipole cou-
pling: the nuclei do interact with one another as dipoles, but these magnetic
interactions are averaged out in liquids by rapid molecular tumbling. There
is a second interaction between nuclei, related to the Fermi contact inter-
action and mediated by shared valence electrons, which is not averaged out
completely. This coupling is known as the scalar or J-coupling. It is directly

3



observable in NMR spectra as a splitting in the NMR signals corresponding
to each nucleus, as shown in figure 1.

Figure 1: Cytosine and its NMR spectrum when dissolved in deuterated
water (D2O). The two sets of peaks each correspond to a signal from a
hydrogen atom. For chemical reasons, only the two hydrogen atoms (the
white spheres) bonded to carbon (black spheres) give rise to NMR signals.
The other three undergo rapid exchange with deuterium in the solvent (light
grey spheres).

A substantial scalar coupling is only seen between two nuclei if they
share significant electron density, implying they are close together in the
same molecule. Close means logically close, not spatially close: the two
nuclei must be connected by a small number of chemical bonds. When the
coupling between two nuclei is small compared with the difference between
their NMR frequencies (weak coupling) the coupling Hamiltonian takes the
simple form

H = J12 (σz1 ⊗ σz2) (4)

where J12, the spin–spin coupling constant, depends on the details of the
molecular structure, but is typically in the range 1 Hz to 1 kHz.

Note that the J-coupling Hamiltonian is not applied to the system from
outside. Instead, it is an inherent interaction which will be manifested any
time the system is allowed to evolve naturally (‘free precession’). Taking into
account the Zeeman effect and the spin–spin coupling, the total Hamiltonian
of a two spin system is

H = 1
2

(
ω1 (σz1 ⊗ I2) + ω2 (I1 ⊗ σz2) + 1

2J12 (σz1 ⊗ σz2)
)

(5)

The notation σz1 simply means ‘an ordinary σz matrix that is here being
used in reference to the first spin’, and I2 similarly means ‘an ordinary
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identity matrix that pertains to the second spin’. The identity matrices
are necessary so that the matrix sums make sense. For a system with n
spins, the Hamiltonian will have n Zeeman terms and 1

2n(n − 1) coupling
terms, although some coupling terms may be so small that they can be safely
neglected.

2.1 Representations of quantum states

Having determined the Hamiltonian and the allowed energy levels of the
system, we now turn to its allowed states. The simplest possible quantum
mechanical system consists of one particle whose state is described by the
state vector |ψ〉. Because of quantisation, the particle will have a fixed
number of discrete energy levels; we are considering a spin-half system, so
we restrict it to two levels which we call |0〉 and |1〉. The spin is a quantum
object and can therefore exist in a superposition of these levels: a general
description of its state is |ψ〉 = α |0〉+β |1〉, where α and β are both complex
numbers and αα∗ + ββ∗ = 1. Written another way,

|ψ〉 =
[

α
β

]
(6)

The density matrix representation of this same state is

ρ = |ψ〉 〈ψ| =
[

αα∗ αβ∗

βα∗ ββ∗

]
(7)

For example, the state (|0〉+ |1〉) /
√

2 can be represented as

|ψ〉 =
1√
2

[
1
1

]
or ρ = |ψ〉 〈ψ| = 1

2

[
1 1
1 1

]
(8)

We can always express ρ in the form ρ = 1
2 (I+ sxσx + syσy + szσz), a

linear combination of the Pauli spin matrices, subject to the constraints that
sx, sy, and sz are all real and s2

x + s2
y + s2

z = 1. Once we have written it in
this form, it is natural to picture ρ as a unit vector called the Bloch vector.
Figure 2 shows the Bloch representation of (|0〉+ |1〉) /

√
2.

What about multiple particles? One obvious way of representing larger
systems is to use tensor products of representations of smaller systems: ρ =
σ1 ⊗ σ2 ⊗ · · · ⊗ σn. For example, a system with two particles, one in an
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Figure 2: Bloch vector representation of the state (|0〉+ |1〉) /
√

2.

equally weighted superposition and one in the state |0〉, is represented by

ρ =
1
2

[
1 1
1 1

]
⊗

[
1 0
0 0

]
=

1
2




1 0 1 0
0 0 0 0
1 0 1 0
0 0 0 0


 (9)

However, quantum mechanics also allows many multi-particle quantum states
which cannot be decomposed into products of constituent states and there-
fore cannot be represented in this way. These states are known as inseparable
or entangled. For example, consider the two particle state

ρ =
1
2

(|01〉+ |10〉) (〈01|+ 〈10|) =
1
2




0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0


 (10)

for which no decomposition into single particle subsystems exists. (The
reader can easily verify this by trying to factor the density matrix.) This
representational difficulty hints at an underlying physical difficulty. Insepa-
rability implies that the information about the state of any particular par-
ticle in an inseparable system is not ‘owned’ by the particle, but is rather
shared between two or more particles in the system. Einstein, Podolsky,
and Rosen suggested that this implied the particles were ‘communicating’
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with one another faster than light, a violation of special relativity [2]. They
argued this apparent paradox could be only be resolved by the introduction
of hidden variables to restore determinism and locality behind the scenes.
In 1964 Bell proved that that a theory with local hidden variables could
be experimentally distinguished from one without them and subsequent ex-
periments seem to have ruled out the possibility of local hidden variables
[3, 4].

The importance of entanglement to quantum mechanics cannot be un-
derestimated. Schrödinger said ‘he would not call that one but rather the
characteristic trait of quantum mechanics, the one that enforces its entire
departure from classical lines of thought’ (cited in [5]). Entanglement and
the associated paradoxes of non-locality have been dealt with extensively in
the literature, but see references [6, 7, 8] for an introductory discussion.

Is there a way of visualising multiparticle states that is analogous to
the Bloch representation for a single state? The answer is, unfortunately,
no. Separable states can be represented as a set of Bloch spheres, but the
Bloch representation breaks down for more general states and no satisfactory
alternative is known. Although this is inconvenient, it should not come
as too great a surprise: the correlations between entangled states are so
fundamentally removed from our everday understanding of nature that it
would be surprising if there were a means of representing them with a picture
or simple classical analogy.

A second representational issue arises when we try to represent parts
of larger systems. Say we would like to represent, however inadequately,
the state of the first particle in the system described by equation (10). We
can do this by averaging (‘tracing’) over the possible states of the second
particle, which gives us

ρ =
1
2

[
1 0
0 1

]
(11)

Since equation (10) describes an inseparable state, we know this representa-
tion is to some extent wanting, and we would like a way of quantifying the
fact that important information is missing. Notice that, while ρ is ordinarily
defined to be |ψ〉 〈ψ|, there is no way of writing equation (11) as a product of
state vectors. This is a general property of fragments of entangled systems
and we call density matrices of this type mixed. The state described by (10)
is in fact the maximally mixed state. Formally, a density matrix is mixed if
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it cannot be written in the form

ρ = |φi〉 〈φi| (12)

but must instead be represented as a sum of several such outer products.
For example, the matrix in (11) can be represented as as 1

2 |0〉 〈0|+ 1
2 |1〉 〈1|.

We can visually represent one spin of a multi-spin state in a similarly
incomplete way as a mixed Bloch vector. Reconsider figure 1, the cytosine
spectrum. The spectral line from each hydrogen nucleus is split, and this
suggests that their Bloch vectors are in some sense split as well. The two sub-
vectors correspond to the two possible states of the other, coupled, hydrogen
nucleus. They precess at slightly different frequencies, which is why they
have slightly different locations in the spectrum. Since the sub-vectors don’t
always point in exactly the same direction, their mean length may be less
than unity, and so mixed vectors are shorter than their pure counterparts;
the most mixed state possible is just a dot at the origin of the Bloch sphere.
Figure 3 shows an example set of sub-vectors and mean vector.

ψ

+z

-z

+x-y

+y-x

Figure 3: Two ways of representing a mixed state Bloch vector. The mean
of the two sub-components (dashed lines) is a vector of less than unit length
(solid line).

We have so far described the states of one spin, or of a small assembly
of spins, but there will be an astronomical number of spins present in the
sample probed in an NMR experiment. A macroscopic volume of liquid is a
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complicated and superficially unquantum object, and we would prefer to ig-
nore the bulk of the liquid and investigate a single molecule whose quantum
behaviour we can analyse mathematically. Could we do this by using spa-
tial localisation techniques, like those used in magnetic resonance imaging,
to pick out individual molecules? Although this technique would be con-
ceptually tidy, it is not practical for several reasons. The signal from any
individual molecule is extremely weak, around 2µeV, so making measure-
ments with reasonable signal to noise would be extremely difficult, although
perhaps not absolutely impossible. More seriously, molecules are tiny, and
even the spacing between them is very small, so achieving sufficient spatial
resolution would be tricky. Even were the spatial resolution fine enough,
however, the rapid motion of molecules in solution means that the targeted
molecule would soon diffuse out of the selected region.

We are therefore forced to detect the combined signal from all the molecules.
Fortuitously, however, we can almost entirely neglect the macroscopic na-
ture of the observed system. The mathematical representation of the ap-
parent state of an NMR system is considerably simpler than the represen-
tation of its actual state. Taking the number of spins in the system to be
P , the full density matrix of the system has 2P elements, making detailed
quantum mechanical calculations hopeless. However, rotational averaging
reduces dipole–dipole coupling between spins in neighbouring molecules to
a second-order effect, and so the system can be considered in terms of an
easily-manipulated reduced density matrix of size 2n, where n is the number
of spins in any one molecule. Instead of being one monstrously complicated
system, the molecules in solution behave like an ensemble of small discrete
systems. They are isolated from one another by dipole averaging, and from
the external environment by simple surface to volume considerations of the
liquid. Nonetheless, the macroscopic and ensemble aspects of the system
are not entirely without implications; we will discuss some of the more in-
teresting ones later.

2.2 Representations of quantum operators

Like quantum states, quantum operations are conveniently represented as
matrices, given by

U = exp
(∫ τ

0
−iH dt

)
(13)

where U is the propagator, H is the operation’s Hamiltonian, and ~ is set
to unity. Although in principle each operation has a unique matrix repre-
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sentation, global phase factors are meaningless in NMR. The propagators
of Hamiltonians which differ only by a multiple of the identity matrix differ
only by a global phase factor, and so these Hamiltonians are in practice ex-
perimentally indistinguishable. All propagators obey one constraint, which
is that they must be unitary. This is an expression of the quantum mechan-
ical axiom that all quantum operations are reversible.

Any unitary operation on a spin can be described a rotation about some
axis. In the case of RF pulses, this correspondence is particularly natural
because a given rotation angle corresponds in practice to a pulse duration,
θ = τω, the angle of the axis in the xy-plane corresponds to the phase
of the RF field, and the declination of the axis from the xy-plane (if any)
is determined by the field’s detuning. For example, we would write the
operator given by application of the Hamiltonian H = ωσx for a period of
τ = π/ω as

U = exp

(∫ π
ω

0
−1

2 iωσx dt

)
=

[
0 −i
−i 0

]
= 180x (14)

Operators that arise from the J-coupling affect the relations between spins
and so they cannot be conveniently described as rotations; instead, they are
simply described in terms of time periods. The operator for the J-coupling
has the general form

U =




exp
(−1

4 iJt
)

0 0 0
0 exp

(
1
4 iJt

)
0 0

0 0 exp
(

1
4 iJt

)
0

0 0 0 exp
(−1

4 iJt
)


 (15)

for a coupling of strength J over a time t. Since we generally want Jt to be
some dimensionless fraction, we describe the operator as a time in units of
1/J , for example, π/(4J).

3 Basics of quantum technologies

Quantum effects are manifested in a wide array of physical systems, but
not every system in which quantumness is observable ought to be consid-
ered an example of a quantum technology. Technologies are sets of tools,
techniques, and concepts which together provide a means of manipulating a
system into performing a task. This task cannot simply be the elucidation
of the techniques and concepts involved—while a pencil can be described as
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a simple technology for writing, it cannot be sensibly described as a tech-
nology for learning about pencils, or, worse yet, as a technology for being a
pencil. Similarly, a quantum technology must achieve some goal beyond the
manipulation and observation of the system’s own quantum nature. Despite
this qualification, manipulation and observation of quantumness are impor-
tant technical pre-requisistes of any quantum technology. For the class of
technologies we are considering, those which relate to quantum information
processing, two kinds of manipulation are required: the ability to control the
evolution of the system (Hamiltonian sculpting), and the ability to control
the starting state of the system (initialization). Observation is a necessary
final step, so that we can read out the answer of our computation or the
transmitted information. Both readout and initialization are complicated
by the ensemble nature of NMR in ways that are often unfortunate but also
unexpectedly interesting.

3.1 Ensemble quantum technologies

It is surprising that a system so tangibly macroscopic as liquid in a test
tube should be a viable quantum technology. The bulk nature of NMR
does in fact have several repercussions at the quantum level, some of which
are more fundamental than others. These implications have experimental
interest in themselves, and they also force us to think deeply about some of
the finer points of quantum mechanics. The study of the ensemble aspects of
NMR is controversial and has inspired a number of theoretical investigations
into previously unexplored aspects of quantum mechanics. For a general
discussion of the issues involved, see reference [9].

We instinctively associate quantum mechanical behaviour with the very
small. Quantum mechanics was not developed until technology advanced to
the point where scientists were able to investigate the tiniest constituents
of matter directly. The very small, it seemed, had a variety of baffling
and essentially disturbing behaviours that weren’t manifested by the larger
objects that had previously been used as the benchmark of normality. How-
ever, once scientists had adjusted to quantum jumps, superpositions, and
apparent action at a distance, they stopped asking why small things didn’t
act like big things, and started wondering why big things didn’t act like
small things. The general conclusion was that macroscopic systems deco-
here rapidly, and that this dilution of the quantumness is responsible for the
apparently ‘normal’ behaviour.

Decoherence is an important concept in the quantum mechanics of the
macroscopic. A system becomes decohered if it interacts with its environ-
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ment, since this interaction causes information about the system to be spread
through the environment; when the environment is traced out this informa-
tion is lost. Having decohered corresponds to being in a mixed state; a
completely decohered system is in the maximally mixed state—that is, the
density matrix is a multiple of the identity matrix.

When we consider a test tube of liquid in a spectrometer, we mentally
divide the state of each molecule into two parts: a large undetectable max-
imally mixed portion, and a small detectable (‘effective’) portion, ρ0:

ρ = (1− ε)I/N + ερ0. (16)

where N = 2n and n is the number of qubits in the molecule. Coherent
states can be temporarily excited only in the ρ0 part. These excited states
will themselves decohere (‘relax’) by interacting with one another and the
environment. There are a number of factors that determine how long this
relaxation takes, including the previously neglected dipole–dipole interac-
tion. Luckily, however, decoherence of the effective state is not a critical
consideration in NMR since the relaxation times are long enough that we
can conduct complex experiments without crippling losses to decoherence.
The mental division into effective state and undetectable maximally mixed
state allows us to largely neglect the ensemble nature of NMR; nonetheless,
the presence of many copies of ρ0 does present problems, particularly in the
initialization and readout of quantum states.

3.2 Observation

Even the small, undecohered, part of an NMR experiment contains multi-
ple copies of the effective state, and this ensemble nature has an immediate
practical implication. It is an axiom of quantum mechanics that a measure-
ment of a state |ψ〉 = α |0〉 + β |1〉 will return, at random, either 0 with
probability |α|2 or 1 with probability |β|2 (assuming the measurement was
made in the computational basis). The measurement will project |ψ〉 into
one of |0〉 or |1〉; if we got an answer of 0, |ψ〉 = |0〉 after the measurement;
if the measurement gave 1, |ψ〉 will be turned into |ψ〉 = |1〉. The measure-
ment returns only partial information about the true state and collapses it
in the process. In an NMR measurement, on the other hand, a measurement
of an effective state |ψ〉 is in fact a measurement of a whole set of |ψ〉s; it
can only return mean values of α and β, and the superposition will not be
destroyed by the measurement. Being able to measure the average popula-
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tion non-destructively seems like a wonderful advantage, but many quantum
information processing techniques rely on projective measurement.

These difficulties aside, the mechanism of observation in an NMR system
is very simple. Spins in a superposition will precess around the z-axis,
while spins with no component in the xy-plane are in an eigenstate and
will not precess. Ensembles of precessing spins give rise to a precessing net
magnetic moment which, by Faraday’s law, induces a voltage in a receiver
coil. We can measure the magnitude and phase of the detected signal and
draw conclusions about the declination of the net magnetic moment from
the z-axis and its phase. The magnitude of the observed signal will decrease
as the system relaxes to equilibrium, and so this measurement process is
called ‘free-induction decay’. It is usually necessary to apply a 90◦ pulse
to the system before measurement, since this has the effect of knocking
z-magnetisation (an eigenstate) down into the xy-plane where it can be
observed.

3.3 Hamiltonian sculpting

The power and utility of NMR as a quantum technology stems from the
malleability of the NMR Hamiltonian. Terms can be modified or suppressed
entirely, almost at will. This allows the experimenter precise control over the
interactions within the system and the response of the system to external
probing. The terms in the NMR Hamiltonian, given in equation (5), are
inherent to the system and cannot be changed, but the average Hamiltonian
over some period depends on the inherent Hamiltonian equation (5) and also
whatever RF field Hamiltonians may have been applied. Its form may be
considerably simpler than that of the inherent Hamiltonian. The literature
dealing with the various possible manipulations of the average Hamiltonian
is vast, but we will briefly describe some of the more important techniques.

The most basic and useful manipulation is the spin echo. Spin echoes
can, among other things, undo the effects of spatial inhomegenities in the
magnetic or RF field, suppress specific interactions, and refocus the effects
of chemical shifts. Spin echoes can be understood by analogy with a budget
tape-deck whose fast-forward and rewind buttons have both broken. In
order to return the tape to its initial position after playing it for some time
τ , it is necessary to take the tape out, flip it over, and then play it again for
a time τ . The important idea is that the action of time can be in some sense
be reversed by flipping the system. The spin echo is also analogous to a
colony of lemurs who leave their nest in a group to go forage in the morning.
Some leap quickly through the trees, while others scurry more slowly on the
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hungry fossa

Figure 4: When lemurs spot a fossa in the distance, they return to their
nest. Lemurs in the trees are further from the nest but are able to jump
rapidly from branch to branch, returning home at the exact same time as
the lemurs on the ground.

ground, so the lemurs are soon dispersed through the forest. When one of
the lemurs spots a predatory fossa in the distance and raises an alarm, all
the lemurs turn around in dismay and head back to the nest. The lemurs
in the trees make rapid progress, but they’re further out from the nest than
the slow-moving ones on the ground, and so the lemurs necessarily all arrive
back at the nest in a clump at the same time. This process is illustrated in
figure 4. Viewed thermodynamically, this restoration of the dispersed and
disordered lemur population into a neat group might seem like an unphysical
violation of the second law of thermodynamics, but this is not the case; the
unitarity of the dispersal process means that there is no increase in entropy
associated with it, and there is therefore no decrease in entropy associated
with its reversal. While they are most commonly used in NMR, spin echoes
are by no means unique to NMR, and they may find wide application in
future quantum technologies.

The normal course of events in an NMR experiment is that an RF pulse
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is applied to the sample to excite it, signal appears, and then the signal
gradually disappears as the sample decoheres back to thermal equilibrium. It
is certainly not normal for signal to appear when no pulse has been applied,
but this is exactly what happens in a spin echo experiment; a 180◦ pulse
is applied after the signal has disappeared, nothing happens for some time,
and then signal spontaneously reappears. This resurrection of a decayed
signal was initially quite startling, not least to the discoverer of the spin
echo, Erwin Hahn. The reason the spin echo works is that much of what
appears to be decoherence in NMR is in fact dephasing across the sample.
Dephasing is unitary and can therefore be reversed with an appropriate pulse
sequence.

Consider the two-spin Hamiltonian, (5), again. In addition to reversing
dephasing error terms, spin echoes can be used to suppress any two of its
three terms, or, in longer combinations, any one of its terms. Selectively ap-
plying a 180◦ pulse to the first spin undoes its evolution and the effects of the
J-coupling but allows the second spin to evolve, selectively refocussing the
second spin similarly kills the ω2σz2 term and the J12 (σz1 ⊗ σz2) term but
keeps the ω1σz1 term, while simultaneously refocussing both spins deletes
the ω1σz1 and ω2σz2 terms but keeps the J-coupling term. Refocussing the
first and second spins at different times removes the J-coupling term but
merely scales down both evolution terms. For systems with more spins, the
pulse sequences for creating arbitrary scaled down Hamiltonians are longer
but not unreasonably so.

A second, less versatile, sculpting technique is spin decoupling. J-couplings
to a specific nucleus can be eliminated by continuously applying a field at
the resonant frequency of the offending nucleus. This causes rapid transi-
tions between its |0〉 and |1〉 states, which causes rapid flips between the
sub-vectors of the coupled nuclei. If these flips are sufficiently rapid, it will
be impossible to distinguish the two components of the Bloch vector and no
splitting will be observed in the spectrum. As a side-effect, all signal from
the target nucleus is obliterated, which is sometimes undesirable.

3.4 Controlling the starting state

Hamiltonian sculpting allows us to precisely control the evolution of an ef-
fective quantum state, and so it seems that driving a system into an effective
state of our choosing ought to be a trivial problem. Unfortunately, the op-
erations we can achieve by Hamiltonian sculpting are all reversible, and this
severly limits the states we can achieve. As initialization requires that the
system be placed in some state |ψ〉, independent of its state before the be-
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ginning of the initialization process, it manifestly cannot be achieved by any
reversible process. Initialization schemes must therefore be quite different
from ordinary operations.

In many quantum technologies, initialization is achieved by cooling to
the ground state. This is not a practical approach for NMR, as the energy
gaps involved are tiny compared with the Boltzmann factor at any reason-
able temperature. Instead, three alternate experimentally accessible pro-
cesses with non-unitary effects are commonly exploited in NMR. These are
relaxation, magnetic field gradients, and phase cycling. The first of these
is the simplest, since it requires no special equipment or post-processing,
and is, in fact, inevitable. Relaxation brings the system into a reproducible
thermal equilibrium which is an adequate starting state for many purposes.
The second technique, gradient crushing, relies on the fact that the sam-
ple forms a macroscopic ensemble; by applying Hamiltonians which vary
over the sample the ensemble averaged evolution can be non-unitary. This
is most commonly achieved by momentarily destroying the spatial homo-
geneity of the main magnetic field, but similar effects can be achieved using
spatially inhomogeneous RF fields. The last approach relies on combining
the results of several subtly different NMR experiments by post-processing;
as this is done by classical methods, such processing is not confined to uni-
tary transformations. In conventional NMR experiments this is referred to
as phase cycling, and plays a central role in many sequences, although for
many purposes it has now been replaced by the use of gradient techniques.
In practice spectroscopic techniques normally rely on relaxation to initialize
the system, while quantum computation usually requires the more sophisti-
cated gradient crushes or phase cycling.

Because initialization by relaxation is so effortless, it is easy to under-
estimate its importance as an initialization technique. The reproducibility
of NMR spectroscopy relies on the well-defined nature of the relaxed state.
More critically, relaxation into thermal equilibrium is necessary before a net
magnetic moment arises. The earliest attempts at an NMR experiment, by
Dutch physicist C. J. Gorter, famously failed because he happened to choose
a sample with an unusally long relaxation time, which meant the system did
not achieve its initialized state before measurements were attempted.

While all of the initialization processes described allow for the manipu-
lation of the effective state, none, even the most non-unitary, allows for the
manipulation or elimination of the maximally mixed portion of the NMR
state. The silent presence of this large decohered volume of solution presents
some fundamental issues. A widely used criterion for quantumness (in the
sense of ‘provable non-classicalness’) is separability. A non-separable state
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clearly has some entanglement (the converse assertion is mathematically
irrefutable but nonetheless more philosophically controversial). By defini-
tion, the effective state of an NMR system exhibiting entanglement is non-
separable, but the state of the entire volume of solution has been shown to
be separable for low polarisation, implying a ‘classical’ description of the
state exists [10]. It has not been shown, however, that transformations be-
tween these ‘classical’ states can be described classically [11]. This forces
a reconsideration of the notion that entanglement is the defining feature
of quantum mechanics, since non-entangled systems can apparently display
non-classical behaviour. NMR has made it clear that entanglement is as yet
poorly understood within the quantum mechanics community, and mixed
state entanglement is currently a very active research area [10, 11, 12].

4 Quantum computation

Hamiltonian sculpting gives us the tools needed to manipulate quantum
spins and the relationships between them. Currently, the most intriguing
use of this power is as a means of implementing quantum computers. Quan-
tum computers are information processing devices which operate by and
exploit the laws of quantum mechanics, potentially allowing them to solve
problems which are intractable using classical computers [13]. They can
implement new types of quantum mechanical algorithms which are far more
computationally efficient than their classical equivalents. The first of these
quantum algorithms to be described was Deutsch’s algorithm [14, 15], while
more recent algorithms include Grover’s search algorithm [16] and Shor’s
factoring algorithm [17]. Shor’s factoring algorithm is particularly relevant
because its implementation would compromise the security of widely-used
public-key cryptosystems such as the RSA system [18] developed by Rivest,
Shamir, and Adleman.

Quantum computers offer huge potential, but present technology is largely
incapable of realising this potential because quantum computers require as-
semblies of quantum spins and these are difficult to prepare, isolate, manip-
ulate, and observe. Although there have been many proposals for systems
which could be used to implement quantum computers, technical difficulties
have so far prevented much experimental progress. To date NMR quantum
computers provide the only working means of implementing full quantum
algorithms. Although it is widely accepted that NMR in its current form
is not a viable means of implementing large quantum information process-
ing devices, many interesting small-scale quantum algorithms and protocols
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have been implemented to date.

4.1 Quantum algorithms

Several two- and three-qubit algorithms have been implemented using NMR
in the past few years, including Deutsch’s algorithm [19, 20] for exposing
double-sided coins in a single glance and algorithms [21, 22, 23] for finding
and counting needles in haystacks. (It goes without saying that the coins and
haystacks are strictly metaphorical.) Some interesting quantum protocols
have also been demonstrated, including quantum state teleportation [24]
and a two bit phase error correction [25] and detection [26] codes.

The first quantum algorithm to be demonstrated was a solution of Deutsch’s
problem. In its simplest form, this problem concerns the analysis of single
bit binary functions. There are four possible functions which take one bit
as input and return a single bit as a result. Two of these return the same
value (zero or one) regardless of the input (constant functions), while one
returns the input and one flips the input (balanced functions). Given an un-
known example of one of these four functions, we would like to know if the
function is one of the constant ones or one of the balanced ones. Ordinar-
ily, we must completely characterise the function by trying it out for both
inputs in order to categorise it. This is a frustrating exercise because we
have to evaluate the function twice and get two bits of information out, but
we only actually want one bit of information. We would prefer to evaluate
the function once and get out just the information we want. The problem
is analogous to deciding if a tossed coin is legitimate. If someone gives us a
coin for a game of chance, we would like to establish first of all that the coin
is not double-sided. Our opponent resents this officiousness, and so they
charge us ten pounds for each side of the coin we look at. Obviously, in the
classical case we must inspect first one side of the coin and then the other
side and pay twenty pounds, but that gives us much more information than
we wanted because we then know whether the coin has two heads, two tails,
a head and a tail, or a tail and a head (although we’d be hard-pressed to
distinguish those last two cases in a normal coin). Deutsch worked out a
quantum algorithm which works by feeding the function a superposition of
zero and one and then interfering the output with itself to get the answer.

Another algorithm that has been implemented in two and three qubits is
Grover’s search algorithm. Grover’s algorithm has less historical importance
than Deutsch’s problem, but it is potentially much more useful. Grover’s
algorithm allows a state satisfying some condition (for example, ‘is this
a needle?’) to be quickly picked out of a large sample (for example, a
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haystack). Like Deutsch’s algorithm, Grover’s search algorithm achieves a
non-classical efficiency boost by simultaneously processing a superposition
of states. We would like to find a state that meets some criteria, so we
alternately feed a superposition to the function to label the satisfying state
and apply a series of gates to drive the superposition into the labelled state.
A classical search over a domain of size N for one of k satisfying elements
would require about 1

2(N/k) function evaluations, whereas the quantum
search requires only O(

√
N/k).

The quadratic speedup in searching is exciting and has several signifi-
cant applications, but the speedup and potential utility pale when Grover’s
algorithm is compared to Shor’s factoring algorithm, which is exponentially
faster than the best known classical algorithm. This exponential speedup is
significant because public-key cryptosystems like RSA and composite sys-
tems based on it, like PGP (Pretty Good Privacy), rely on the presumed
exponential difficulty of factoring for their security. A related exponentially-
faster algorithm exists for solving the discrete logarithm problem, which is
the basis of the DSS (Digital Signature Standard) cryptosystem. Public-key
cryptosystems are absolutely ubiquitous in modern communication, and so
were these cracking algorithms to be realised on large computers, the eco-
nomic impact would be enormous. Although one element of Shor’s algorithm
has been demonstrated on an NMR quantum computer [27], it seems that
any full implementation is out of reach for the moment.

Richard Feynman is often credited with first highlighting the power of
quantum information processing in 1982 by observing that quantum sys-
tems were impossible to simulate efficiently using classical means [28]. One
corollary of this is the well-known one that quantum systems might have
remarkable information processing capabilities, which has led to the pro-
liferation of quantum algorithms. A second and less well-studied corollary
is that quantum systems could efficiently simulate other quantum systems
[29]. This second corollary was recently demonstrated by a group who per-
formed an efficient simulation of a truncated quantum harmonic oscillator
using NMR techniques [30].

Like classical computers, quantum computers have four basic elements:
(qu)bits, logic gates, a means of initialization, and a means of reading out
the answer. Once these elements are in place, the implementation of any
algorithm is relatively straightforward. We have already touched on initial-
ization and measurement in NMR, but we will revisit them in a quantum
computation context as gates, as well as discussing the implementation of
qubits and ordinary logic gates.
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(a) (b)

(c) (d)

Figure 5: Spectra of cytosine with the qubits in states (a) |00〉, (b) |01〉, (c)
|10〉, and (d) |11〉 Note that the state |00〉 is similar but not identical to the
thermal equilibrium shown in figure 1; the assymetric peaks here are due to
experimental imperfections.

4.2 Bits and qubits

Qubits are the quantum analogues of bits. Unlike bits, qubits can exist in
superpositions of states or entangled with one another. Therefore, while
classical computers are limited to performing operations on one n-bit state
at a time, a quantum computer which handles n qubits can process a simul-
taneous superposition of 2n possible states. Qubits are generally individual
spin 1

2 particles like photons or atoms. Consider figure 1, the cytosine spec-
trum, again. Each group of peaks corresponds to a qubit. In the spectrum
shown, the qubits are in thermal equilibrium; figure 5 shows spectra of the
same molecule with the qubits in the states |00〉, |01〉, |10〉, and |11〉.

Two-qubit computers are theoretically interesting, but we would natu-
rally like to build much larger computers. In this we are limited by several
factors [31], of which two are major issues; the first is the difficulty of engi-
neering molecules with a sufficient number of spin-half nuclei appropriately
coupled to one another, and the second is the difficulty of resolving the sig-

20



nals from many qubits sharing a limited bandwidth. For example, the range
of Larmor frequencies found for 1H nuclei in simple organic compounds,
and working at a 1H frequency of about 500MHz, is only about 5000 Hz,
and this limited frequency range can soon ‘fill up’. Extra bandwidth can
be found by using a variety of spin half nuclei, since the NMR transition
frequencies of different nuclei are very different, but this approach cannot
be continued indefinitely, as the number of suitable nuclei is small: the only
obvious candidates are 1H, 13C, 15N, 19F and 31P.

4.3 Logic gates

A logic gate is a controlled interaction between a targeted spin and its en-
vironment. A one qubit gate is an interaction between the spin and the
outside environment, and a two qubit gate is an interaction between a spin,
its environment, and another spin [32]. A one-qubit gate can be represented
as a simple rotation of the Bloch vector, while a two-qubit gate affects the
relationships between spins and so its effects cannot be quite so easily visu-
alised. In the case of NMR, an applied RF field mediates the interactions
responsible for one qubit gates while the combined effects of the RF field
and J-coupling are responsible for implementing two qubit gates such as the
controlled-not gate.

Although there are many possible logic gates, any algorithm can be ef-
ficiently implemented using a limited repertoire of gates. In the classical
case, any logic gate can be built efficiently from the two-bit nand gate
(along with implicit swap and clone gates which interchange and dupli-
cate bits, respectively), so any algorithm can be implemented using only
nands. In the quantum case, almost any gate is universal, although it is
often more convenient to use a larger set of gates. A convenient set usually
quoted is one qubit rotations plus the two qubit controlled-not gate, but
an equivalent adequate set is one-qubit rotations and a two qubit controlled
phase shift.

4.3.1 One qubit gates

We describe below the operation of some of the more common one and two
qubit gates. The simplest non-trivial gate is the not gate,

k =
[
0 1
1 0

]

(17)
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Up to an (irrelevant) global phase factor, this is equivalent to the matrix
given in (14), and so we can implement not gates using 180x pulses. The
not gate can be understood clasically, but there are several commonly used
quantum gates which have no classical equivalents. One of these is the
square-root-of-not gate,

k√ = 1√
2

[
1 −i
−i 1

]

(18)

The square-root-of-not gate has the property

k√ k√ = k (19)

It is easy to see that such a gate can be implemented using a 90x RF pulse.
Another very common gate is the Hadamard gate, which, like the square-
root-of-not, takes eigenstates to superpositions, but is also self inverse. It
is described by

H = 1√
2

[
1 1
1 −1

]

(20)

The Hadamard gate can be implemented in NMR using a pulse which is
deliberately applied off-resonance to give exp

(−iπ (σx + σz) /2
√

2
)

or a two
pulse pair, 90y · 180x. It is often experimentally simpler to use the pseudo-
Hadamard gate, 90y,

h = 1√
2

[
1 1
−1 1

]

(21)

which takes eigenstates to uniform superpositions, but is not self-inverse.
The inverse pseudo-Hadamard gate is implemented by the rotation 90−y.
Another useful operation that has no classical analogue is the phase shift
operation,

¹¸

º·
π
2 z =

[
1 0
0 i

]

(22)

This gate rotates the Bloch vector about the z-axis. It is rarely used in
theoretical descriptions of algorithms but it can be useful in their adaptation
to NMR.
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4.3.2 Two qubit gates

Although there are in principle a wide variety of two-bit gates, all interesting
two bit gates implement conditional dynamics where the state of one qubit is
used to control changes made to the state of a second qubit. The controlled-
not is a particularly useful two-qubit gate because it is comparable to a
classical exclusive-or gate and, along with a complete set of one-qubit gates,
it comprises a set of adequate gates. In matrix-form, the controlled-not gate
is given by

w

k
=




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




(23)

For the purposes of NMR computation, it is simplest to replace the controlled-
not with Hadamard transforms and a symmetric controlled phase shift, and
then replace the Hadamard transforms by pseudo-Hadamard gates, which
gives the following circuit:

h−1

w

w¹¸

º·
πz

h

=




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




(24)

Here

w

w¹¸

º·
πz =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1




(25)

The controlled phase shift is less analogous to classical gates like the exclusive-
or than the controlled-not is, but it is a more natural algorithmic build-
ing block in an NMR context. The operator of the controlled phase shift
is equivalent (within a global phase shift) to exp

(−iπ
4

(
σ1

z + σ2
z − σ1

zσ
2
z

))
.

The transformation described by equation (25) can be implemented (in a
two-qubit system) by allowing the system to evolve under the influence of
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its Hamiltonian, with some tweaking, or it can be implemented in a more
controlled way by using the identities θz = 90−x · θy · 90x to replace the
z-rotations by operations which can be implemented using RF pulses.

Controlled phase shifts and controlled-nots are important gates because
they spread information about the control-bit through a larger system, po-
tentially creating entanglement. They can also be used as building blocks
of routines which move information around in a system without creating
entanglement. For example, consider the SWAP network:

@
@

@
@@

¡
¡

¡
¡¡

=

w

k

k

w

w

k
=




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1




(26)

Swapping becomes important in networks where not every spin is coupled
to all the other spins; in this case it is sometimes necessary to swap dis-
tant qubits through the network to bring them near each other before a
controlled-not can be applied between them. Note the distinction here be-
tween spins (or nuclei) and qubits (or states); while we loosely speak of
spins and qubits as though they were the same thing, spins are physical
objects and qubits are abstract quanta of information. Therefore we can
move qubits through a molecule—without ever changing the positions of
the actual spins—by swapping information between spins and then men-
tally adjusting which qubits we map onto which spins. Several techniques
in conventional NMR spectroscopy are related to the swap sequence.

4.3.3 Measurement gates

The ensemble nature of NMR means that there are actually two types of
measurements we can make in the course of implementing an algorithm.
The first, more obvious, measurement is a standard NMR ensemble mea-
surement. This usually takes places at the end of an algorithm, and it tells
us the answer (or, technically speaking, the average state of the measured
qubit). We can represent such a measurement in a logic network as a period
of observable free precession,

¤¡
£¢
¤¡£¢¤¡£¢

(27)
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There are many circumstances, however, under which we want to conduct
a measurement in the middle of the logic network. Some of the most excit-
ing algorithms, such as Grover’s fast search algorithm and Shor’s factoring
algorithm, as well as popular protocols like teleportation and quantum error-
correction, require measurements midway through. What happens in these
algorithms and protocols is that we measure the state of the system, an
eigenvalue of the measurement operator is returned, and we take some im-
portant algorithmic action based on the result of the measurement. But
what exactly is a measurement, in this context?

Ordinarily, a measurement is the extraction of some information about
the microscopic system out to a macroscopic level. This process can be
described quantum mechanically as the entanglement of the system to its
environment. The quantum mechanical description does not specify the size
of the environment, and so we are perfectly entitled to entangle our state to a
one qubit ‘environment’, thereby completely bypassing the macroscopic part
of the process. We achieve this entanglement by using a controlled-not gate.
Therefore, the following gate, previously described as a controlled-not, is
also, in fact, the ‘measurement gate’:

w

k (28)

Under normal circumstances, the measurement would be followed by some
action based on the result, and these conditional dynamics can also be built
directly into the algorithm. But wait—while we might have achieved the
entanglement-and-control part of the measurement process within our algo-
rithm, we certainly have not managed to collapse the wave function to an
eigenstate. As it happens, this is absolutely unimportant, because quantum
mechanics is linear. If our algorithm dictates we take action a if a measure-
ment returns |0〉 and action b if a measurement returns |1〉, we can build
this decision process right into the logic circuit so that the appropriate ac-
tion is taken on the relevant part of a superposition. Processes analogous to
macroscopic measurement can also be effected using decoherence to destroy
off-diagonal elements in the density matrix [24].

4.3.4 Input gates

Initialization is the process of placing a quantum computer in some well
defined initial state. As was already discussed, this can be difficult in en-
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semble systems. Although the thermal equilibrium state is adequate for
many spectroscopic applications, a quantum computer really requires its
qubits to be in the pure state |0〉 = |000 . . . 0〉 prior to beginning the compu-
tation. For this reason conventional liquid state NMR was long ruled out as
a practical technology for quantum computation. In 1996, however, Cory,
Fahmy, and Havel pointed out that an effective (in the sense used in section
3.1) pure state was sufficient, and described a procedure for making effec-
tive, or pseudo-pure, ground states [33]. For the simplest possible quantum
computer, comprising a single qubit, this process is trivial, as the thermal
equilibrium density matrix has exactly the desired form, but with larger sys-
tems the situation is more complicated. For a system of n spin-half nuclei,
assumed to all be of the same nuclear species (a homonuclear spin system),
the 2n eigenstates will be distributed across an evenly spaced ladder of n+1
groups of energy levels, with the number of (nearly degenerate) states within
each group given by Pascal’s triangle, and the population of each state de-
termined by the Boltzmann equation. Transforming this complex state into
the pseudo-pure ground state requires a non-unitary process. The original
approach of Cory et al. is based on the use of magnetic field gradients and
is in many ways the most satisfying, but an alternative ‘temporal averaging’
scheme based on post processing [34] has also proved extremely popular.

Although in general gradient crushes or phase cycling are required to
produce acceptable ground states for quantum computation, there does ex-
ist one elegant initialization scheme which requires only relaxation processes
[35]. In this process a pure state is produced by logically selecting an ap-
propriate subset of the thermal equilibrium state. While the thermal equi-
librium spin density matrix for an n spin system (n > 1) is not unitarily
related to the state |0〉 = |000 . . . 0〉, subsets of energy levels can be chosen
which do have the correct pattern of populations; the computation is then
performed within this subset of states. Although theoretically pleasing this
scheme appears to be more complex than the other approaches, and only
two experimental implementations have been reported [36, 37]. Regardless
of the technique used to achieve it, a pseudo-pure ground state input is
represented in a logic network as

|0〉 (29)

The difficulty of initialization in NMR has sparked theoretical research
into the previously uncontested assumption that useful computations must
take as their starting state a pure (or at the very least, pseudo-pure) state
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that has been initialized to some value. In classical computation the only
available states are pure, and initialization is simple, and so there has never
been any reason to doubt the truth of the assumption. In NMR, on the other
hand, mixed states are much more accessible than pure states. It is tempting
to ask if they can themselves be a computational resource even though the
question seems ridiculous, since maximally mixed states cannot be detected
and are impervious to unitary transformations. Surprisingly, it has been
shown recently that even maximally mixed states, in combination with one
pure qubit, actually can be used to perform quantum algorithms with better-
than-classical power [12, 38]. One of the dogmas of quantum information
processing, first stated by Ekert and Josza, is that its power stems from the
presence of entanglement [39], but the research into mixed states prompted
by NMR quantum computation is forcing a serious reconsideration of the
Ekert–Josza dogma.

5 Quantum spectroscopy

One reason why the implementation of quantum computers using NMR has
been able to outstrip implementations using any other technology is that
many of the techniques required were already well known in the NMR spec-
troscopy community. In fact, there are two major groups of conventional
NMR techniques which exploit quantum effects. Both use similar routines
based on partial swaps but with different aims. The first group, polarisation
transfer sequences like INEPT (Insenstitive Nuclei Enhanced by Polarisa-
tion Transfer) and variants, involve creating correlations between two spins
in order to extract information about the first spin by exploiting the second,
more measurement-friendly, spin. The second class, COSY (COrrelation
SpectroscopY) sequences and variants, create correlations between a large
number of spins and then use the presence or absence of these correlations
to infer structural information about a molecule. (Both of these techniques
highlight the fondness for whimsical acronyms in the NMR community.)
INEPT sequences are useful if the nucleus to be measured has a small gy-
romagnetic ratio, since these nuclei are less sensitive. COSY sequences, on
the other hand, are primarily useful in untangling complex spectra.

5.1 Coherences

Although entanglement is well-known in the NMR spectroscopy community,
it is rarely discussed in the terms of Einstein, Podolsky, and Rosen. Instead
it is described using a technical language whose major lexical ingredient is
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‘orders of coherence’. The reason a macroscopic system such as liquid in a
test tube is able to display quantum behaviour is that there is coherence be-
tween the various pseudo-pure states. What this means in practical terms
is that their Bloch vectors point in the same direction; were this not the
case, some (or all) components would go to zero in any measurement of the
average state and so significant information would be lost. While this co-
herence is both a prerequisite for any useful manipulation of the system and
a fairly natural consequence of the fact that the applied RF field is phase-
homogenous across the sample, it is still a special enough condition that
it is given the name quantum coherence. Technically, unentangled qubits
lying in the xy-plane (in the state |0〉 + exp (iφ) |1〉) exhibit single quan-
tum coherence. Two-party entangled states of the form (|01〉+ |10〉) /

√
2,

which would be called an Eistein–Podolsky–Rosen (EPR) pair by physicists,
are known as zero-quantum coherences. A double quantum coherence de-
scribes another entangled state state very similar to the two-party ‘cat-state’
(|00〉+ |11〉) /

√
2 (named after the Schrödinger cat), while a triple quantum-

coherence describes the three-party cat-state (|000〉+ |111〉) /
√

2, and so on
for higher orders of coherence.

5.2 Polarisation transfer

One of the uses of higher order coherences in NMR spectroscopy is to in-
crease the sensitivity of the spectroscopy of spins with low gyromagnetic
ratios. These are issues particularly with nuclei like 13C or 15N; their low
gyromagnetic ratio means the energy levels are closely spaced, which in
turn means the excess population in the ground state is quite small. We can
increase the polarisation, and consequently the observable signal, by trans-
ferring polarisation from relatively highly-polarised 1H spins. This gives us
a potential polarisation gain of γH/γI , where γI is the gyromagnetic ratio
of the weakly polarised (insensitive) species.

The most basic polarisation transfer sequence that exploits quantum
coupling is the INEPT sequence, but a neater variation known as refocused-
INEPT is also used. These sequences are essentially partial swaps, in which
the state of the hydrogen is transferred to the insensitive nucleus without
transferring its state back to the hydrogen. We can drop the transfer-back
part of the process because only the spectrum of the insensitive nucleus is
of interest.

Written as a logic circuit, refocused-INEPT is
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(30)

The upper qubit is the highly-polarised one, and the lower qubit is the
poorly-polarised one. At the end of the network, we measure only the state
of the lower qubit, since only it is of interest. The refocused-INEPT net-
work is not particularly intuitive in form, but the corresponding NMR pulse
sequence is very simple to implement. The two controlled-not gates are
responsible for the partial swap character of refocused-INEPT.

The net action of the refocused-INEPT sequence on a typical starting
state of (σz1)⊗ I2 (neglecting multiples of the identity matrix) is

σz1 ⊗ I2 R−INEPT−→ I1 ⊗ σx2 (31)

It uses the coupling between the spins to turn what was a maximally mixed
state of the second spin into a superposition which can then be manipulated
and observed. The process is somewhat analogous to using one of a pair of
coupled pendula to set the other one swinging.

5.3 Correlation spectroscopy

The object of correlation spectroscopy is to arrive at spectral assignments
by determining the network of spin-spin couplings in a molecule. It does this
by extending the spectral information over two dimensions and looking for
cross-peaks between spectral lines. For example, consider the spectrum of
the sugar derivative shown in figure 6. All the peaks must be associated with
nuclei, but it’s not clear which are self-contained peaks and which arise from
splittings, nor is it at all obvious what peaks might belong to what nuclei.
It would be useful to know what couplings existed between the peaks, since
this would allow us to begin piecing out a relation between the observed
spectrum and the geometry of the molecule.

We can do this by taking a two-dimensional spectrum in which cross-
peaks exist only between atoms whose scalar coupling is relatively large,
since we can simply read off the correlation network from such a spectrum.
A correlation spectrum of the same sugar derivative is shown in figure 7.
The conventional spectrum can be seen running diagonally down the figure.
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Figure 6: A sugar derivative and part of its NMR spectrum. The spectrum
is sufficiently complicated that it becomes difficult to make assignments
or infer geometric information about the molecule. Signal arises from the
hydrogen atoms (white spheres).

Although the presentation of the data in figure 7 gives a better impression
of the overall form of the COSY data, it is somewhat unusual; in practice it
is much easier to interpret the spectra using flat contour plots, as shown in
figure 8. Only part of the spectra and the corresponding part of the sugar
molecule are shown.

5.3.1 Evolution and measurement—again

In order to understand where the second dimension in two-dimensional spec-
troscopy comes from, it’s necessary to return once more to the subject of
measurement and evolution. Ordinarily, we consider the two processes to be
quite distinct—we allow spins to evolve over the course of a pulse sequence,
and then we measure them at the end. Physically, however, the processes
are almost identical. A spin is normally probed in NMR spectroscopy by
using an RF pulse to knock the Bloch vector onto the xy-plane, where the
precession of the superposition state about the z-axis induces a voltage in
the receiver coil. In quantum computation, we generally want to know the
present state of the spin, and so we look to see if the spin is inducing a
current in the receiver coil. In both cases the measurement process involves
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Figure 7: A COSY spectrum of the system shown in figure 6. The central
region shows a three dimensional plot of the COSY data, the side panels
show the (low resolution) one-dimensional spectrum, and a contour plot is
shown on the ‘floor’. Peaks on the main diagonal which share off-diagonal
cross-peaks correspond to atoms which are physically close to each other.

making a record of the changing state of the receiver coil with time and then
taking a Fourier transform of this time-domain signal to extract the Larmor
frequencies of the various spins in the system. During this time, the spins
will continue to evolve under the influence of the system’s Hamiltonian. Not
only is this natural, it is an essential part of the measurement process, be-
cause it is the changing state of the system that causes the changing state of
the receiver coil. For example, the sub-components of an entangled spin will
evolve at different frequencies under the influence of a J-coupling, and this
frequency difference is manifested as a splitting in the spectral line. This
frequency difference also means that the sub-components will generally end
up in different places from one another at the end of the measurement, and
non-classical correlations might have arisen in the system. Ordinarily, we
don’t care, because the measurement was the final stage of the experiment.
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Figure 8: A portion of the sugar from figure 6 and the COSY spectrum
shown in figure 7, with cross-peak connections drawn in. (Some cross-peaks
lie outside the region shown.) Looking at the connections and observing that
hydrogen 1 must be close to hydrogen 2, which must be close to hydrogen 3,
which must be close to hydrogen 4, allows those hydrogens to be identified
as part of the carbon chain in the sugar ring. Hydrogen 0 doesn’t share
any cross-peaks with these hydrogens, and so it must lie some distance from
the central ring—examination of the rest of the COSY spectrum allows its
location to be determined more exactly. Note that it’s purely fortuitous
that the spectral frequency happens to be correlated with the position in
the molecule—if this were always the case, spectroscopy would be much
simpler than it is.

What happens if we introduce a second period of evolution, t1, in the
middle of the experiment? An evolution step like this is the basis of the
controlled-not gate, and so it ought not to have very extraordinary con-
sequences beyond the possible introduction of correlations into the system.
But now what happens if we observe the variation of the final signal with
t1? Suddenly the extra evolution is both a measurement and an evolution
step. Assuming (sensibly enough) that we also measure the system at the
end of the experiment, we now have two time parameters, and so we can
perform a two-dimensional Fourier transform on our data set. The way this
is done in practice is that the sequence will be repeated many times for
different values of t1, giving a series of free-induction decays in t2 which can

32



be Fourier-transformed into a series of spectra. This series of spectra is then
Fourier-transformed with respect to t1 to give a two-dimensional spectrum.

While there are a variety of two-dimensional techniques, figure 7 was
taken using the oldest and most basic of these, known as a COSY sequence.
The COSY logic circuit is shown below (in general there will be many spins
in the system):

k√

k√

...
k√

¤¡
£¢
¤¡£¢¤¡£¢
t1

¤¡
£¢
¤¡£¢¤¡£¢

...¤¡
£¢
¤¡£¢¤¡£¢

k√

k√

...
k√

¤¡
£¢
¤¡£¢¤¡£¢
t2

¤¡
£¢
¤¡£¢¤¡£¢

...¤¡
£¢
¤¡£¢¤¡£¢

The first RF pulse flips the spins down onto the y-axis so that they can
be ‘measured’, the time delay allows correlations to build up in the system,
the second RF pulse converts the correlations into a form which will be
rendered observable by further free precession, and the final time delay then
converts this antiphase magnetisation into an observable superposition of the
second spin. (Observation of the signal also takes place during the second
time period.) By working out the evolution of the system mathematically,
one finds that the normal spectrum will be observed on the diagonal, and
that cross-peaks will be observed between spectral lines if there exists a
substantial J-coupling between them—exactly as we see in figures 7 and
8. In other words, if atoms are close together, they will couple and become
correlated, whereas if they are spatially separated they won’t. We can extend
this technique to three and four dimensions to extract even more information
about coupling networks from large biomolecules.

6 Conclusions

NMR is a seductive subject for many reasons, but two of them are basic:
it allows us to probe the material character of the world, and it allows us
to probe the possibilities of the world. Because of its quantum character,
NMR gives us a versatile and sensitive spectrographic tool for chemical anal-
ysis; in other words, it is a means of working out what things are made of
and how molecules are put together. This directly extends our understand-
ing of our surroundings but it is not the only worthwhile application of
NMR; NMR also extends our understanding of what we can do with our
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surroundings. We want to know what restrictions nature places on its ex-
ploitation, even if achieving this understanding means running into these
restrictions. The limits on what can be done with classical computers and
the more generous limits that exist for quantum computers make implement-
ing a quantum computer using NMR an extraordinarily interesting problem.
Even if NMR quantum computers never get beyond a primitive level, we still
have a desire to build these primitive prototypes. Part of the reason is of
course the fact that tricks and insights physicists gain from collaboration
with chemists may be applicable to other implementations of a quantum
computer or even to other branches of physics. NMR quantum computa-
tion has already prompted a flurry of investigations into the foundations of
quantum mechanics and its connection to the deeper aspects of computer
science. The real experimental attraction of an NMR quantum computer is
more subtle, however; we want to try just to see if we can, even if our own
best predictions tell us that we ultimately can’t.
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